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Introduction
There has been increasing evidence on the impact of obstructive 

sleep apnea (OSA) on the onset, recurrence, and persistency of atrial 
fibrillation (AF) [1]. Atrial remodeling (AR) plays a critical role in this 
scenario [2].

Guidelines have been emphasizing the importance of the diagnosis 
of OSA in AF patients [3]. The presence of OSA is associated with 
lower arrhythmia-free survival rates compared to patients without 
OSA. Therefore, screening is an important step when rhythm-control 
strategy is chosen [4].

The pathophysiological interrelationship is established by the 
multifactorial atrial arrhythmogenesis presented in OSA patients. 
Recurrent hypoxemia, reoxygenation, and associated inflammation 
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chronically activates autonomic, inflammatory and tissue remodeling 
responses [5]. This promotes AR, which constitutes the arrhythmogenic 
substrate [6]. AR is divided into electrical [7], structural [8, 9], and 
functional AR [10].

The aim of the present study was to evaluate AR variables in 
patients with OSA using non-invasive electrocardiographic and 
echocardiographic methods, as well as the impact of the magnitude and 
duration of hypoxemia in these parameters.

Methods
Two hundred and three consecutive patients undergoing 

polysomnography (PSG) in a tertiary hospital were screened, and 
80 patients met eligibility for clinical, electrocardiographic, and 
echocardiographic evaluation. 
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Included patients were divided into groups based on Apnea-
Hypopnea Index (AHI) established by the International Classification 
of Sleep Disorders (ICSD-3) [11]. The absence of OSA was defined 
by AHI <15 events/h (OSA-) and OSA was established by AHI ≥15 
events/h (OSA+) [12]. Patients were also categorically divided into 
groups based on minimum oxyhemoglobin saturation (MinSat) (>90%, 
80-90%, and <80%); and total time below 90% saturation (<1-minute, 
1-60minutes, and >60minutes). 

In-lab whole-night PSG was performed using digital ALICE-5 
Respironics® device, under supervision of trained professionals. 
Patients were monitored by electroencephalogram, electrooculogram, 
electromyogram, electrocardiogram (ECG), pletismography, 
oxyhemoglobin saturation, airflow thermistor, microphone, and body 
positioning visualization. 

Electrocardiogram

All included patients underwent 12-lead ECG and signal average 
ECG (SAECG) analysis using the DMS model 300-6 device. SAECG 
was performed using Frank’s leads. 

Twelve-lead ECG was recorded at 25mm/s and 1mV/cm 
simultaneously in all leads. Electronic calipers were used for 
interval measurements using the TEB software. The following 
electrocardiographic variables were analyzed: SAECG P-wave 
duration; maximum (P-max), minimum (P-min), and mean P-wave 
(P-med) in 12-lead ECG [13]; P-wave dispersion (calculated by the 
difference between maximum and minimum P-wave in 12-lead ECG) 
(Pd); P-wave duration in lead II (P-DII); duration of PR interval in lead 
II; P/PR interval; QT duration in leads II and V5 and, its components 
(Q-Tpeak, J-Tpeak, Tonset-Tpeak, Tpeak-Tend) [14,15]; and corrected 
QT (QTc) using the Bazett’s formula [16,17]. 

We sought to analyze different P-wave intervals as representatives of 
atrial depolarization and ventricular repolarization as an extrapolation 
of atrial repolarization by ECG evaluation.

Echocardiogram

Echocardiogram was performed using the Vivid E9 GE HealthCare 
module. The three-dimensional full volume method was used for 
volumetric functional evaluation and the following left atrium (LA) 
volumes and indexes were calculated [18]: 

•	 Maximum LA volume (MaxVol), 

•	 LA volume preceding atrial contraction (PreA), 

•	 Minimum LA volume (MinVol).

•	 Total LA emptying volume (TEV): MaxVol – MinVol; 

•	 Total LA emptying fraction (TEF): (TEV/ MaxLAVol)x100,

•	 Passive LA emptying volume (PEV): MaxVol – PreA), 

•	 Passive LA emptying fraction (PEF): (PEV / MaxVol)x100,

•	 Active LA emptying volume (AEV): PreA – MinVol),

•	 Active LA emptying fraction (AEF): (AEV/ PreA) x 100.

Atrial strain was obtained by speckle tracking evaluation in the 
reservoir (ԑR) and atrial contraction (ԑCT) phases. The conduit phase 
strain (ԑCD) was given by the difference between ԑR and ԑCT [8]. 
Diastolic function was graded according to current recommendations 
[19]. All echocardiographic data was analyzed offline using the 

EchoPac-PC software, and observers were blinded to patient’s 
polysomnographic results.

By 2D- and 3D-echocardiographic analysis, we sought to evaluate 
the atrial structure by volumetric evaluation and its function by 
emptying volumes and fractions, as well as atrial strain in the different 
atrial cycle phases.

Inclusion Criteria 

Two hundred and three consecutive patients undergoing PSG at 
Instituto Dante Pazzanese de Cardiologia in Sao Paulo, Brazil, were 
summoned for initial evaluation.

Exclusion Criteria

The following exclusion criteria were adopted: cardiomyopathy 
of any etiology, permanent pacemaker, moderate/severe valvopathy, 
chronic kidney disease on dialysis, angina, previous myocardial 
infarction or coronary revascularization, prior stroke, documented AF 
of any type, use of class I and/or III antiarrhythmic agents, CPAP usage 
at any time, central sleep apnea, untreated hypothyroidism, non-sinus 
rhythm at initial ECG evaluation, types II or III atrioventricular block 
and intraventricular conduction abnormalities, PR interval <120ms 
or >230ms, secondary ventricular repolarization abnormalities, heart 
rate <50bpm or >110bpm at basal ECG, moderate or severe pulmonary 
hypertension, restrictive diastolic dysfunction.

Local ethical committee approved the study and informed consent 
was provided to all included patients.

Statistical Analysis 

Initially, all variables were analyzed descriptively. Quantitative 
variables were presented as mean, standard deviation, and median 
when appropriate. Qualitative variables were presented as absolute and 
relative frequencies.

Linear regression models, with two progressive models, established 
the mean comparison between groups. On the first model, we 
considered the association of each of the IAH-based MinSat-based, 
and T90-based groups, regarding the following electrical, structural, 
and functional endpoints:

•	 Electrical Remodeling: P-SAECG, P-max, P-min, P-disp, 
P-med, QT-V5, QT-DII, QTc-DII, Q-Tpeak, Tpeak-Tend, J-Tpeak, 
P-DII, PRi-DII, and P/PRi-DII

•	 Structural remodeling: Max LA Volume, Min LA Volume, 
PreA LA Volume, and 2D-Indexed LA Volume.

•	 Functional remodeling: TEF, PEF, AEF, TEV, PEV, AEV, ԑR, 
ԑCT, and ԑCD.

On the second model, we adjusted by linear regression the 
initial model 1 results to age, sex, BMI, and the presence of diabetes, 
hypertension, and hyperlipidemia. Homogeneity between proportions 
was tested by the Chi-squared or Fisher’s exact tests. For variable 
correlations we used the coefficients of Pearson and Spearman. 

The software used for analysis was the R 3.6.0 (R Core Team, 2019). 
The adopted level of significance for tests was 5%.

Results
Out of 203 screened patients, 123 were excluded in the table, 

resulting in a total of 80 included patients (60% females) (Table 1). 
Forty-one patients were classified as OSA- and 39 as OSA+. 
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Mean age was 60.8 ± 11.1 years and mean BMI was 31.95 ± 6.5kg/
m². The majority of patients (91.2%) had hypertension and 61.3% were 
on three or more antihypertensive agents. Mean CHA2DS2VASc score 
was 2.13. Demographic characteristics are presented in the below table 
(Table 2).

OSA+ patients were older and had higher prevalence of diabetes 
and hyperlipidemia as expected by the prevalence of these features 
in OSA patients and by the study’s transversal design. Regarding 
medical therapy, a median of 3.05 and 2.63 antihypertensive agents 
were observed in the OSA+ and OSA- groups, respectively, with 
no significant statistical difference. Higher prevalence of statin use 
occurred in OSA+ patients. Polysomnographic, electrocardiographic 
and echocardiographic findings are shown in the table (Table 3). 

Increased N1 stage, decreased slow-wave sleep, and increased 
arousals and desaturation indexes in the OSA+ group reinforce that 
patients were adequately stratified according to polysomnographic 
characteristics [20]. 

Heart rates and basic cycle length were similar in both groups, which 
made possible the analysis of the different ECG intervals. Likewise, 
patients with and without OSA exhibited similar and preserved left 
ventricular systolic function, with no significant differences in diastolic 
function. 

Atrial Remodeling Endpoints
Electrocardiographic findings are presented in the below tables 

(Table 4 and Table 5). No significant differences in all analyzed variables 
were seen between OSA- and OSA+ groups. Lower oxygen saturation 
(MinSat <80%) was associated with increased P wave duration on 
SAECG when compared to MinSat >90% (121.1 ± 5.5 vs. 109.83 ± 5.1, 
respectively; p = 0.042). 

Exclusion criteria n %
Ischemic cardiomyopathy/ AMI/ Myocardial Revascularization 26 21,1%
Dilated cardiomyopathy 10 8.1%
Chagasic cardiomyopathy 6 4.9%
Hypertrophic cardiomyopathy 5 4%
Hypertensive cardiomyopathy 5 4%
Congenital cardiomyopathy 2 1.6%
Atrial Fibrillation - Paroxistic 12 9.7%
 Persistent 1 0.8%
 Permanent 6 4.9%
Stroke 9 7.3%
Class I or III antiarrhythmics 8 6.5%
CPAP 7 5.7%
RBBB 5 4%
Pacemaker 4 3.2%
Moderate or severe valvopathy 4 3.2%
Secondary ventricular repolarization abnormality 4 3.2%
Angina 4 3.2%
Dialytic nephropathy 4 3.2%
Atrial Flutter 2 1.6%
LBBB 1 0.8%
Central apnea 1 0.8%
Heart rate < 50bpm 1 0.8%
TOTAL 123 100%

AMI: Acute myocardial infarction, CPAP: Continuous positive airway pressure, RBBB: 
Right bundle branch block, NYHA: New York Heart Association, LBBB: Left Bundle 
Branch Block.

Table 1: Exclusion criteria.

Variable OSA-
(n = 41)

OSA+
(n = 39)

p value 

Age (years) 58 ± 11.63 63.77 ± 9.93 0.02
Female 28 (68.3%) 20 (51.3%) 0.12
Weight (kg) 83.5 ± 18.48 86.8 ± 18.92 0.42
BMI (kg/m²) 31.6 ± 6.2 32.3 ± 6.9 0.61
Functional class: NYHA I 36 (87.8%) 28 (71.8%) 0.22
 NYHA II 3 (7.3%) 6 (15.4%)  
 NYHA III 2 (4.9%) 5 (12.8%)  
Hypertension 36 (87.8%) 37 (94.9%) 0.43
Systolic arterial pressure (mmHg) 143.3 ± 24.5 135 ± 18.6 0.093
Diastolic arterial pressure (mmHg) 87.8 ± 13.7 82.3 ± 11.8 0.059
Number of antihypertensive agents 2.63 ± 1.7 3.05 ± 1.3 0.26
Current
Smoking 

1 (2.44%) 2 (5.13%) 0.61

Previous smoking 15(36.6%) 17 (43.6%)  
Epworth sleepiness scale 9.8 ± 5 10.3 ± 6.0 0.73
Diabetes 9 (22%) 21 (53.9%) 0.003
Hypothyroidism 5 (12.2%) 3 (7.7%) 0.71
Obesity 24 (58.5%) 22 (56.4%) 0.84
Hyperlipidemia 26 (63.4%) 34 (87.2%) 0.014
Chronic kidney disease 2 (4.9%) 0 (0%) 0.49
Statin use 23 (56.1%) 32 (82%) 0.012
Oral antidiabetics/ Insulin 15 (36.6%) 21 (53.9%) 0.12
ASA 19 (46.3%) 19 (48.7%) 0.83

AHI: Apnea-Hypopnea Index, OSA: Obstructive sleep apnea, BMI: Body Mass Index, 
NYHA: New York Heart Association scale, Asymp.: Asymptomatic, ASA: Acetylsalicylic 
Acid.

Table 2: Clinical demographic characteristics.

Variable OSA- (n = 41) OSA+ (n = 39) p value
Polysomnography
Total sleep time (min) 319.8 ± 8 323.9 ± 11.5 0.72
Sleep latency - NREM (min) 27.7 ± 3.3 17.4 ± 4.7 0.032
Sleep latency - REM (min) 127.2 ± 13 120 ± 18.6 0.69
Sleep efficiency (%) 79.8 ± 1.8 79.6 ± 2.6 0.94
Stage 1 9.35 ± 1.3 16.7 ± 1.9 <0.001
Stage 2 51.5 ± 1.4 46.9 ± 2 0.028
Slow-wave sleep 22.8 ± 1.3 18.7 ± 1.9 0.033
Rapid eye movement sleep 16.4 ± 1.1 17.2 ± 1.6 0.62
Arousal index (events/h) 13.6 ± 2.2 29.7 ± 3.1 <0.001
Desaturation index - NREM (events/h) 22.8 ± 3.8 55 ± 5.5 <0.001
Desaturation index - REM (events/h) 7.3 ± 3.4 44.3 ± 4.9 <0.001
Oxygen saturation - basal (%) 95.9 ± 0.3 94.3 ± 0.4 0.001
Oxygen saturation - mean (%) 94.8 ± 0.3 92.8 ± 0.5 <0.001
Electrocardiographic
Heart Rate (bpm) 68.1 ± 10.2 66.2 ± 14.3 0.49
Basic cycle length (ms) 893 ± 131.7 936.9 ± 172.1 0.2
Echocardiogram
LVEF (%) 65.4 ± 3.3 65.3 ± 4.2 0.91
Indexed LAVol (2D) (ml/m²) 34.6 ± 6.5 32.9 ± 8.6 0.39
E/A 1.09 ± 0.3 0.93 ± 0.3 0.026
Diastolic Function: Normal 32 (78.1%) 26 (68.4%) 0.66
I Degree Diastolic Dysfunction 2 (4.9%) 3 (7.9%)

II Degree Diastolic Dysfunction 7 (17.1%) 9 (23.7%)

Table 3: Polysomnographic, electrocardiographic, and echocardiographic findings in 
patients with and without OSA.

OSA: Obstructive sleep apnea, NREM: Non-rapid eye movement sleep, REM: rapid eye 
movement sleep, LVEF: Left ventricular ejection fraction, LAVol: Left atrial volume, E/A: 
Mitral valve E velocity divided by A-wave velocity
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Patients in the group with T90 > 60 min presented longer P-SAECG, 
P-max, P-mean, and P-DII compared to T90 <1 minute group (125.8 ± 
4.3 vs. 115.9 ± 2.7, p = 0.026; 136.3 ± 4.9 vs. 123.4 ± 3, p = 0.009; 123.2 
± 4.3 vs. 113.1 ± 2.7, p = 0.019; 135.3 ± 5.4 vs. 116.3 ± 3.4, p = 0.001, 
respectively. Although not statistically significant (p = 0.051), P-wave 
dispersion was numerically greater in the T90 > 60minutes compared 
to <1 min group.

With respect to repolarization parameters, the group represented 
by patients with T90, 1-60 min presented longer QT interval in lead 
V5 when compared those in T90 <1 min (420.2 ± 9.1 vs. 401.9 ± 7.8, 
respectively; p = 0.049). Although not statistically significant, similar 
results were observed with DII-lead QT and corrected QT intervals 
when T90 > 60 min and < 1 min groups were compared (p = 0.053 
and p= 0.06, respectively). Finally, T 90 > 60 min group presented 
decreased Tonset-Tpeak interval when compared to the < 1 min group 
(161 ± 14.2 vs. 192.1 ± 8.8, respectively; p = 0.031).

Two- and three-dimensional echocardiographic parameters were 
not different between OSA+ and OSA- groups (Table 6). No differences 
were seen between groups when stratified according to saturation 
either (Table 7). 

On the other hand, lower PEF was observed in OSA+ group (27.7 ± 
1.8 vs. 32.4 ± 1.3, respectively; p = 0.012) and there was a trend towards 
decreased PEV and increased AEF in OSA+ patients compared to 
OSA- (p = 0.06 and 0.08, respectively) (Table 8).

Patients with MinSat between 80-90% and <80% presented lower 
conduit strain when compared to those with MinSat >90% (13.8 ± 2.8 
and 13 ± 2.7 vs. 20.5 ± 2.4; p = 0.016 and p = 0.008, respectively). T90 
>60minutes was associated with decreased PEF when compared to T90 
<1 min (27.3 ± 3.1 vs. 33.6 ± 1.9, respectively; p = 0.045) (Table 9).

Variable OSA- (n = 41) OSA+ (n = 39) p value
P-SAECG (ms) 115.83 ± 1.9 119.69 ± 2.8 0.17
P-Max (ms) 123.05 ± 2.1 127.49 ± 3 0.15
P-Min(ms) 96.12 ± 1.9 96.69 ± 2.7 0.83
P-Dispersion (ms) 27.17 ± 1.9 30.79 ± 2.7 0.18
P-Med (ms) 112.51 ± 1.9 115.61 ± 2.7 0.25
P-DII (ms) 116.85 ± 2.4 122.74 ± 3.5 0.096
PRi-DII (ms) 169.2 ± 3.6 174.1 ± 5.2 0.34
P/PRi 0.7 ± 0.01 0.72 ± 0.02 0.39
QT-DII (ms) 405.9 ± 5.4 415.7 ± 7.7 0.2
QT-V5 (ms) 409.9 ± 5.4 416.5 ± 7.7 0.4
QTc DII (ms) 431.5 ± 3.9 432.1 ± 5.5 0.91
Q-Tpeak (ms) 318.3 ± 5.3 325.5 ± 7.5 0.34
J-Tpeak (ms) 228.9 ± 5.3 232.4 ± 7.6 0.64
Tonset-Tpeak (ms) 189.1 ± 6.3 187.5 ± 8.9 0.85
Tpeak-Tend (ms) 91.7 ± 3 90.9 ± 4.3 0.86

AHI: Apnea-Hypopnea Index, OSA: Obstructive sleep apnea, , SAECG: Signal-averaged 
electrocardiogram, P-Max: Maximum P-wave duration, P-min: Minimum P-wave duration, 
P-Med: Mean P-wave duration, P-DII: P-wave duration in lead DII, QT-DII: QT interval 
duration in lead DII, QT-V5: QT interval duration in V5, QTc: corrected QT interval, QT 
interval components: Q-Tpeak, J-Tpeak, Tpeak-Tend, and Tonset-Tpeak.

Table 4: Electrocardiographic findings in patients with and without OSA.

MinSat
Variable >90% (n = 12) 80-90% (n = 38) p value <80% (n = 30) p value
P-SAECG (ms) 109.83 ± 5.1 115.47 ± 5.5 0.3 121.08 ± 5.5 0.042
P-Max (ms) 124.6 ± 6.6 121.1 ± 5.9 0.62 129.3 ± 5.9 0.36
P-Min(ms) 95.3 ± 4.9  96.2 ± 5.3 0.87 96.8 ± 5.3 0.78
P-Dispersion (ms) 28.7 ± 4.8 25.2 ± 5.2 0.49 32.6 ± 5.1 0.45
P-Med (ms) 110.7 ± 4.8 111.1 ± 5.2 0.94 117.4 ± 5.2 0.19
P-DII (ms) 114.83 ± 6.3 115.86 ± 6.8 0.88 124.1 ± 6.8 0.17
PRi-DII (ms) 162.8 ± 9.3 167.8 ± 10.1 0.62 176.4 ± 10 0.18
P/PRi 0.71 ± 0.03 0.69 ± 0.04 0.63 0.71 ± 0.04 0.91
QT-DII (ms) 405 ± 14.2 407.4 ± 15.4 0.87 414.7 ± 15.3 0.52
QT-V5 (ms) 408.6 ± 14.3 401.9 ± 7.7 0.78 414.1 ± 15.4 0.72
QTc DII (ms) 416 ± 10.7 428.1 ± 11.4 0.29 437.4 ± 11.4 0.064
Q-Tpeak (ms) 319.5 ± 13.9 323.4 ± 15.1 079 320.6 ± 15 0.94
J-Tpeak (ms) 232.5 ± 13.9 233.9 ± 15 0.92 227.2 ± 14.9 0.72
Tonset-Tpeak (ms) 190 ± 16.3 193.4 ± 17.6 0.84 183.2 ± 17.6 0.7
Tpeak-Tend (ms) 88.7 ± 7.8 88.2 ± 8.4 0.95 94.6 ± 8.4 0.48
T90
Variable <1minute 

(n = 10)
1-60minutes 

(n = 57)
p value >60minutes 

(n = 12)
p value

P-SAECG (ms) 115.9 ± 2.7 117.17 ± 3.2 0.7 125.8 ± 4.3 0.026
P-Max (ms) 123.4 ± 3 123.3 ± 3.6 0.99 136.3 ± 4.9 0.009
P-Min(ms) 96.5 ± 2.7 94 ± 3.2 0.15 102.8 ± 4.3 0.32
P-Dispersion (ms) 24.8 ± 2.7 29.5 ± 3.2 0.15 33.6 ± 4.4 0.051
P-Med (ms) 113.1 ± 2.7 112.7 ± 3.1 0.81 123.2 ± 4.3 0.019
P-DII (ms) 116.3 ± 3.4 117.4 ± 13.7 0.78 135.3 ± 5.4 0.001
PRi-DII (ms) 165.7 ± 5.2 172.1 ± 6.2 0.3 180.8 ± 8.4 0.077
P/PRi 0.71 ± 0.02 0.69 ± 0.02 0.42 0.76 ± 0.03 0.11
QT-DII (ms) 399 ± 7.8 417.1 ± 9.2 0.053 400.8 ± 12.5 0.88
QT-V5 (ms) 401.9 ± 7.8 420.2 ± 9.1 0.049 399.7 ± 12.4 0.86
QTc DII (ms) 425.7 ± 5.7 431.8 ± 6.6 0.36 442.9 ± 9.0 0.06
Q-Tpeak (ms) 317.5 ± 7.7 326.8 ± 9.1 0,.31 306.8 ± 12.4 0.39
J-Tpeak (ms) 231.4 ± 7.7 233.5 ± 9.1 0.81 215.4 ± 12.4 0.2
Tonset-Tpeak (ms) 192.1 ± 8.8 194.6 ± 10.4 0.81 161 ± 14.2 0.031
Tpeak-Tend (ms) 81.7 ± 4.3 94.4 ± 5.1 0.015 92.9 ± 6.9 0.1

Table 5: Electrocardiographic findings according to minimal oxygen saturation and T90.

MinSat: Minimum saturation of oxyhemoglobin, SAECG: Signal-averaged 
electrocardiogram, P-Max: Maximum P-wave duration, P-min: Minimum P-wave duration, 
P-Med: Mean P-wave duration, P-DII: P-wave duration in lead DII, QT-DII: QT interval 
duration in lead DII, QT-V5: QT interval duration in V5, QTc: corrected QT interval, QT 
interval components: Q-Tpeak, J-Tpeak, Tpeak-Tend, and Tonset-Tpeak. T90: Total time 
below 90% of oxyhemoglobin saturation.

Variable OSA- (n = 41) OSA+ (n = 39) p value
Indexed LAVol (2D) (ml/m²) 33.4 ± 1,3 33.3 ± 1.8 0.97
MaxLAVol (mL) 58.1 ± 2,6 56.6 ± 3.7 0.69
PreALAVol (mL) 39.4 ± 2,1 41.1 ± 2.9 0.56
MinLAVol (mL) 27.2 ± 1,5 26.3 ± 2.1 0.66

AHI: Apnea-Hypopnea Index, OSA: Obstructive sleep apnea, LAVol: Left atrial volume, 
MaxLAVol: Maximum LAVol, PreALAVol: LAVol preceding atrial contraction, MinLAVol: 
Minimum LAVol.

Table 6: Echocardiografic findings in patients with and without OSA.

MinSat
Variable >90% (n = 12) 80-90% (n 

= 38)
p 

value
<80% (n 

= 30)
p 

value
Indexed LAVol (2D) 
(ml/m²)

35.8 ± 3.3 32.7 ± 3.6 0.38 33.5 ± 3.6 0.51

MaxLAVol (mL) 59.9 ± 6.9 56.7 ± 7.5 0.67 57.6 ± 7.4 0.75
PreALAVol (mL) 39.6 ± 5.4 39.1 ± 5.9 0.93 41.4 ± 5.8 0.75
MinLAVol (mL) 25.9 ± 3.9 26.3 ± 4.2 0.91 27.4 ± 4.2 0.72
T90
Variable <1minute (n 

= 10)
1-60minutes (n 

= 57)
p value >60minutes (n 

= 12)
p value

Indexed LAVol (2D) 
(ml/m²)

32.3 ± 1.9 33.4 ± 2.2 0.61 34.5 ± 3 0.47

MaxLAVol (mL) 55.2 ± 3.9 57.2 ± 4.6 0.67 60.1 ± 6.2 0.34
PreALAVol (mL) 36.6 ± 3 40.3 ± 3.6 0.3 45.1 ± 4.9 0.086
MinLAVol (mL) 25.3 ± 2.2 26.9 ± 2.6 0.53 28.6 ± 3.3 0.35

MinSat: Minimum saturation of oxyhemoglobin, LAVol: Left atrial volume, MaxLAVol: 
Maximum LAVol, PreALAVol: LAVol preceding atrial contraction, MinLAVol: Minimum 
LAVol, T90: Total time below 90% of oxyhemoglobin saturation.

Table 7: Echocardiographic findings according to minimal oxygen saturation and T90.

https://doi.org/10.47275/2690-862X-127


Pages: 5-7Int J Integr Cardiol, Volume 4:1

Citation: El Andere T, Armaganijan LV, Moreira DAR, et al. (2022) Predictors of Atrial Remodeling in Patients with Sleep Apnea: Analysis of Electrocardiographic 
and Echocardiographic Variables. Int J Integr Cardiol, Volume 4:1. 127. DOI: https://doi.org/10.47275/2690-862X-127

Finally, the exposure rates to desaturation varied between AHI 
subgroups (Figure 1).

Discussion
In this transversal, hypothesis-generating study of the three main 

domains of atrial remodeling, we failed to demonstrate significant 
electrical differences between groups using an AHI cut off of 15 
events/h. Increased P-SAECG, however, was observed in patients with 
MinSat <80%. Additionally, there was a significant association between 
abnormal P-wave-related variables, particularly P-SAECG, P-max, 
P-mean, and P-DII and T90 > 60 min. 

Electrical remodeling was first demonstrated by the publication of 
Can I, et al. (2009) [13], in which P wave duration and its dispersion 
were significantly increased in patients with OSA compared to 

Variable OSA- (n = 41) OSA+ (n = 39) p value
TEF (%) 52.8 ± 1.4 53.3 ± 2.1 0.83
PEF (%) 32.4 ± 1.3 27.7 ± 1.8 0.012
AEF (%) 47.5 ± 4.8 59.6 ± 6.9 0.083
TEV (mL) 30.9 ± 1.6 29.8 ± 2.3 0.64
PEV (mL) 18.9 ± 1.1 16 ± 1.5 0.06
AEV (mL) 12.2 ± 1.1 14.8 ± 1.6 0.11
Reservoir strain (ԑR) (%) 29.8 ± 1.4 30 ± 1.9 0.95
Conduit strain (ԑCD) (%) 14.4 ± 1 13.4 ± 1.4 0.5
Contraction strain (ԑCT) (%) 15.5 ± 0.8 16.4 ± 1.2 0.41

AHI: Apnea-Hypopnea Index, OSA: Obstructive sleep apnea, TEF: Total emptying 
fraction, PEF: Passive emptying fraction, AEF: Active emptying fraction, TEV: Total 
emptying volume, PEV: Passive emptying volume, AEV: Active emptying volume.

Table 8: Echocardiographic functional remodeling parameters in patients with and without 
OSA.

MinSat
Variable >90%

(n = 12)
80-90% 
(n = 38)

p value <80% 
(n = 30)

p 
value

TEF (%) 56.6 ± 3.7 53.3 ± 4 0.4 52.3 ± 4 0.28
PEF (%) 34.1 ± 3.4 31 ± 3.7 0.4 28.6 ± 3.7 0.14
AEF (%) 56.9 ± 12.9 51.2 ± 14 0.68 54.9 ± 13.9 0.88
TEV (mL) 34 ± 4.2 30.2 ± 4.5 0.39 30 ± 4.5 0.36
PEV (mL) 19.8 ± 2.8 17.9 ± 3 0.52 16.7 ± 3 0.31
AEV (mL) 14.2 ± 3.1 12.8 ± 3.3 0.66 14 ± 3.3 0.95
Reservoir strain (ԑR) (%) 34.6 ± 3.5 30 ± 3.8 0.22 29.1 ± 3.8 0.14
Conduit strain (ԑCD) (%) 20.5 ± 2.4 13.8 ± 2.8 0.016 13 ± 2.7 0.008
Contraction strain (ԑCT) 
(%)

14.5 ± 2.1 16.1 ± 2.3 0.46 15.9 ± 2.3 0.52

T90
Variable <1minute 

(n = 10)
1-60minutes 

(n = 57)
p value >60minutes 

(n = 12)
p value

TEF (%) 53.9 ± 2.1 52.4 ± 2.5 0.56 53.8 ± 3.4 0.97
PEF (%) 33.6 ± 1.9 29.4 ± 2.3 0.074 27.3 ± 3.1 0.045
AEF (%) 47.4 ± 7.3 53.9 ± 8.6 0.45 59.3 ± 11.7 0.31
TEV (mL) 29.9 ± 2.4 29.8 ± 2.8 0.97 32.5 ± 3.8 0.49
PEV (mL) 18.4 ± 1.6 17.2 ± 1.9 0.51 17.8 ± 2.6 0.53
AEV (mL) 11.5 ± 1.7 13.4 ± 2 0.34 16.6 ± 2.7 0.06
Reservoir strain (ԑR) (%) 32 ± 2 29.1 ± 2.4 0.22 29.5 ± 3.2 0.44
Conduit strain (ԑCD) (%) 15.9 ± 1.5 13.1 ± 1.8 0.1 14.1 ± 2.4 0.45
Contraction strain (ԑCT) 
(%)

16 ± 1.2 15.9 ± 1.4 0.96 15.4 ± 1.9 0.76

MinSat: Minimum saturation of oxyhemoglobin, TEF: Total emptying fraction, PEF: 
Passive emptying fraction, AEF: Active emptying fraction, TEV: Total emptying volume, 
PEV: Passive emptying volume, AEV: Active emptying volume, T90: Total time below 
90% of oxyhemoglobin saturation.

Table 9: Echocardiographic functional remodeling parameters according to minimal 
oxygen saturation and T90.

Figure 1: T90 vs. AHI by different subgroups.

T90: Total time below 90% of oxyhemoglobin saturation, AHI: Apnea-Hypopnea Index.

control. Significant reduction of P-wave duration was also reported 
after treatment with CPAP in small studies [16]. However, the only 
randomized study on the topic showed no relevant impact of CPAP on 
ECG variables during the follow up [17].

Intermittent hypoxemia reduces atrial velocity conduction and 
generates atrial tissue refractory heterogeneity. It also contributes 
to autonomic hyperactivation and inflammatory response [5]. 
Chronically, it results in longer atrial depolarization, represented by 
increased P-wave duration. As shown in 3452 patients by Gami AS, et 
al. (2007) [22], the decrease in oxyhemoglobin levels was the strongest 
risk factor for the occurrence of AF in patients <65 years. 

Recently, there has been attributed an increasing value to T90-
based evaluation. T90 assessment has shown to be superior to AHI as 
a prognostic factor regarding cardiovascular mortality in older men 
[23]. This reflects no correlation between T90 and AHI [24]. For an 
event to count by AHI evaluation, it does not necessarily have to have 
associated desaturation. Lower AHI values might include long apneas, 
with higher exposure to desaturation. In our study, the exposure rates 
to desaturation varied between AHI subgroups.

The longer the QT interval, the higher the risk of AF, as shown by 
the Nielsen JB, et al. (2013) [25], and different community prospective 
cohorts [26]. Although the association between T90 and the QT interval 
has not been demonstrated, this might be an important component 
involved with the genesis and recurrence of AF in OSA patients. 

In the Bachmann TN, et al. (2016) [27], increased Tpeak-Tend was 
shown to be associated with increased mortality, cardiovascular death, 
and incident AF. In the study of Bilal N, et al. (2018) [28], OSA patients 
presented increased QT dispersion and reduction with CPAP use. 
The association between T90 and increased QT dispersion has not yet 
been shown. In the present study, T90 was associated with decreased 
Tonset-Tpeak, which reflects increased repolarization dispersion. This 
in turn when associated with intra e interatrial heterogeneous and slow 
conduction leads to atrial micro reentry, which, in part, result in AF. 

In regards to echocardiographic parameters of structural 
remodeling, there were no differences between OSA– and OSA+ 
groups. It is well established that hypertension plays a critical role in 
the development of atrial remodeling in both OSA+ and OSA- patients. 
Studies have shown that OSA patients with hypertension present left 
ventricular remodeling [29,30]. Hypertension generates left ventricular 
hypertrophy, diastolic and/or systolic dysfunction, and activates the 
RAAS pathway, which subsequently lead to atrial remodeling [31]. Our 

https://doi.org/10.47275/2690-862X-127


Pages: 6-7Int J Integr Cardiol, Volume 4:1

Citation: El Andere T, Armaganijan LV, Moreira DAR, et al. (2022) Predictors of Atrial Remodeling in Patients with Sleep Apnea: Analysis of Electrocardiographic 
and Echocardiographic Variables. Int J Integr Cardiol, Volume 4:1. 127. DOI: https://doi.org/10.47275/2690-862X-127

sample was composed by a high prevalence of resistant hypertension. 
This might have influenced the similar rates of diastolic dysfunction 
between OSA+ and OSA- groups.

Interestingly, all patients with no desaturation presented normal 
diastolic function. Diastole is an active, ATP-dependent process, and 
precedes systolic dysfunction in chronic exposure to hypoxemia [32].

Echocardiographic variables of atrial functional remodeling reflect 
the hypoxemia-associated diastolic dysfunction in atrial function. 
AHI-based and saturation-based evaluations both point towards 
conduit phase atrial dysfunction in OSA patients, intimately related to 
left ventricular myocardial relaxation, which is consistent with other 
studies evaluating atrial function in OSA patients [33,34].

Conclusions
The presence of OSA was not associated with significant electrical, 

functional, and structural atrial remodeling. With increasing evidence 
that a saturation-based analysis might be superior to AHI-based 
evaluation, we demonstrated the association of different non-invasive 
electrical and functional remodeling variables with hypoxemia, 
particularly by using a T90 based approach. 
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