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Introduction 
Heart diseases like cardiac arrhythmias (Figure 1) are posing a 

major threat to healthcare departments worldwide [1]. For therapeutic 
targets for arrhythmias, scientists have majorly been focusing on 
Calcium (Ca2+) dysregulation [2] for a long using different downstream 
and upstream agents as targets to find different approaches. Other 
therapies with anti-arrhythmic drugs pose different challenges since 
the drugs are non-tissue specific and sometimes can be pro-arrhythmic 
[3, 4]. Ablation-based therapies can complicate the process further 
posing a risk of cardiac tamponade, pulmonary vein stenosis, and other 
nerve injuries and traumas [5, 6]. On the other hand, an improved 
understanding of the autonomic nervous system has provided 
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considerable insight into its involvement in the origin and evolution of 
cardiac illnesses like cardiac arrhythmias [7-9]. The cardiovascular and 
nervous systems work on a bi-directional feedback system mediated by 
the autonomic nervous system in a hierarchical form. In the hierarchy, 
the upper cortical centers, the brain stem, and the spinal cord make 
up Level 1, while the stellate and dorsal root ganglia are examples of 
thoracic extra-cardiac neurons at Level 2, whereas intrinsic cardiac 
neurons are found in Level 3 [10]. The possibilities to target the 
downstream and upstream processes at the neuronal level are immense.

Possible Neural Targets in Arrhythmias

High throughput sequencing has made it possible to identify 
important transcripts that potentially generate proteins involved in 
dysfunctional neurotransmission, which allows for hypothesis testing. 
RNA sequencing is appropriate for examining neural reorganization of 
efferent and afferent neurons of the autonomic system in vitro because 
this method can be used on whole tissue as well as on individual cells. 

For instance, new data suggests that defective regulation of 
cytosolic Ca2+ homeostasis and exocytosis is associated with a 
considerable number of differently expressed genes in stellate ganglia 
from hyperactive sympathetic rat models [11, 12]. The human stellate 
neurons in which these transcripts were maintained also offer a 
more comprehensive physiological viewpoint. Quantitative reverse 
transcription polymerase chain reaction  (qRT-PCR) was performed 
to verify the differential expression of many transcripts [11]. The 
use of network and enrichment analysis allowed the identification 
of several gene ontology groupings. Extracellular ligand-gated ion 

Figure 1: Molecular and cellular mechanisms of cardiac arrhythmias [1].
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channel activity-related transcripts, particularly glutamatergic and 
dopaminergic signaling pathways associated with regulating Ca2+ 
balance, were identified as gene ontology families and functional 
pathways. Additionally, Patent Ductus Arteriosus (PDE) activity 
was changed, corroborating earlier studies that linked sympathetic 
dysautonomia to poor cyclic nucleotide signaling [11, 13].

Transcriptome alterations however offer an approach to assess the 
responsibility of lead genetic variants in the control of physiological 
processes, even though they do not immediately correspond to changes 
in protein levels or reveal protein-protein interactions. For instance, 
PDEs, which are enzymes that have selectivity for cAMP as well as cGMP, 
are present in cells in various isoforms and play a role in sustaining the 
equilibrium of cAMP and cGMP concentrations. Research has shown 
that the stellate ganglia in rats with sympathetic hyperactivity have a 
lower expression of PDE2A and PDE11A, and an increased expression 
of PDE6B compared to those in normal rats. However, further studies 
on stellate tissue from diseased rats and humans indicate that PDE2A 
activity and protein levels rise during times of heightened sympathetic 
activity [14]. When PDE2A is increased in healthy neurons through 
overexpression with an adenovirus, the resulting increase in PDE2A’s 
hydrolytic activity decreases cGMP levels activated by an agonist. 
This mimics the diseased state and causes higher levels of Ca2+ and an 
increased release of noradrenaline from neurons [15]. It is interesting 
to note that in diseased neurons, cGMP activators’ capacity to decrease 
intracellular Ca2+ levels and neurotransmission can be restored by 
inhibiting PDE2A with medication or introducing a version of PDE2A 
with reduced activity [14]. 

Whether the discovered transcripts linked to impaired sympathetic 
function are completely conserved throughout mammalian genomes is 
still up for debate. After doing an investigation, Bardsley et al. (2018) 
[11] revealed that the mouse stellate ganglia included several of the 
major transcripts thought to be candidates. Notably, the expression 
levels between the sexes varied significantly [16], which may need to 
be a consideration while researching different species. Transcriptomes 
offer useful data for further investigation, but they simply demonstrate 
a statistical relationship and make no other firm claims. It is important 
to confirm the transcripts at the protein level, show that they have 
functional importance, and show that they are present in human tissue 
before it can be determined whether they have an effect. This is crucial 
for identifying target genes and potential clinical applications.

While transcriptomics does not have any biases towards certain 
hypotheses, it can still uncover surprising connections that were 
missed using traditional pharmacological methods. Pre-synaptic beta-
adrenergic receptor gene expression was found to be expressed at low 
levels in rats by Bardsley et al. (2018) [11] and these receptors’ presence 
in human stellate neurons was also confirmed by qRT-PCR [17]. 
Studies employing animal models earlier demonstrated the presence 
of beta-adrenergic receptors in studies using animal models [18], and 
it was suggested that these receptors might be involved in regulating 
noradrenaline release during nerve stimulation. This idea is referred 
to as the “adrenaline hypothesis” of hypertension. It has recently been 
proven that human tissue contains beta-adrenergic receptors and the 
precise signaling mechanism that underlies the adrenaline theory 
of hypertension. Bardsley et al. (2018) [11] used RNA sequencing, 
immunocytochemistry, and Forster resonance energy transfer imaging 
to evaluate the activity of cAMP-PKA, and measurements of cytosolic 
Ca2+ concentrations to assist their findings. Only in diseased neurons 
did they discover a functioning Ca2+-dependent exocytosis that was 
largely brought on by beta 2-adrenergic receptor inducement of the 

cAMP-PKA pathway. In an animal model of rat and human stellate 
neurons, increased levels of phenylethanolamine-N-methyltransferase 
caused messenger molecule shifting in favor of the production of 
adrenaline [17]. According to the research by Bardsley et al. (2018) 
[11] there was an upregulation in noradrenaline and adrenaline in 
the neuronal cells of pre-hypertensive rats. This discovery underlines 
the possibility that increased catecholamine release from pre-synaptic 
neurons could further stimulate sympathetic transmission by 
stimulating beta-adrenergic receptors, supporting the hypothesis that 
higher levels of these chemicals may contribute to the development 
of hypertension. Circulating catecholamines along with an increase 
in these chemicals’ neuronal release may significantly boost cardiac 
postsynaptic excitability [19, 20]. 

The cause of heightened cardiac sympathetic transmission in heart 
disease is not definitively known. However, it has been observed that 
changes in the autonomic nervous system, both in the central and 
peripheral areas of the heart’s neural pathway, can occur before the 
disease’s visible signs become apparent [21-24]. Numerous studies have 
suggested that disruption of the NO-cGMP pathway may potentially be 
involved, and that oxidative stress plays a crucial role in sympathetic 
dysautonomia [25]. Normally, NO-cGMP stimulates PDE2A, which 
in turn lessens the cAMP-mediated phosphorylation of neuronal Ca2+, 
helping to control sympathetic transmission [26-28]. In a rat model of 
increased sympathetic activity, boosting the protein Nos1, specifically 
in noradrenergic neurons, can correct issues with the NO-cGMP 
signaling pathway and restore normal levels of Ca2+-dependent release 
of neurotransmitters [29, 30]. 

Genome-wide association studies (GWAS), which is a ‘top down’ 
approach, have offered more insight into the significance of the NO-
cGMP pathway than transcriptomics, which is a ‘bottom up’ approach. 
CAPON, which is an nNOS adaptor protein also called NOS1AP has 
been found to have a significant influence on the modification of the NO 
pathway [31]. GWAS findings that single nucleotide polymorphisms in 
NOS1AP are connected to alterations in the QT interval and sudden 
cardiac mortality initially made it clear how important CAPON is to 
the NO-cGMP pathway [32, 33]. Additional research has revealed that 
polymorphisms in NOS1AP also contribute to the rise in arrhythmic 
incidents and sudden cardiac death in Long QT type 1 individual [34]. 
During NOS1AP overexpression in cardiac muscle cells, a shortening 
of the QT interval was noticed. It was believed that this happened via 
a route in which CAPON and nNOS collaborate to block ICaL and 
activate IKr in a cGMP-dependent manner. This causes a quicker 
return to the resting state, which caused the QT interval to normalize 
[35]. It is interesting to note that a sympathetic surge that occurs during 
demanding physical activity and stressful situations is a major cause 
of unexpected mortality in people with specific forms of LQTS [36]. 
CAPON was first found in the brain [37] but has also been discovered 
in the peripheral autonomic ganglia [31]. It has been discovered that 
adaptor protein upregulation in sympathetic neuronal cells lowers 
neurotransmission through cGMP dependent mechanism owing to the 
lowering of N-type Ca2+ current, and the Ca2+ transient. Mutations in 
CAPON may lead to aberrant sympathetic transmission and produce 
afterdepolarizations, while the precise role of this route in regulating 
arrhythmia is yet unclear.

Future Challenges

The problem with controlling the autonomic nervous system is 
that the most effective doses and stimulation methods are still being 
researched. Despite compelling preclinical data and a convincing 
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argument for addressing the unbalanced interaction between the 
sympathetic and parasympathetic neural systems in this condition, two 
recent studies of vagus nerve stimulation in heart failure failed to show 
any benefit [38].

Conclusion
Targeted therapies using neural modulation may be created 

when researchers obtain a greater knowledge of particular triggers 
responsible for different types of arrhythmias. Although the use of 
neural modulation for treating cardiac arrhythmias has frequently been 
demonstrated, it is still in its infancy or is currently being researched for 
other forms of arrhythmias. To verify the promising findings of earlier, 
smaller studies and to better understand the individual autonomic 
triggers, further study is required.
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