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Introduction
Multimodality Imaging in CVDs

Multimodality imaging in CVDs is a rapidly evolving field that 
leverages various imaging techniques to enhance the diagnosis, 
management, and risk stratification of cardiovascular conditions [1, 
2]. This approach is particularly beneficial in complex cases where 
single-modality imaging may not provide comprehensive insights. 
Multimodality imaging combines data from different imaging 
techniques, such as echocardiography, CT, MRI, and PET, to offer a 
more holistic view of cardiovascular health (Table 1). This integration is 
crucial for early detection, accurate diagnosis, and effective management 
of CVDs, especially in populations with specific needs, such as cancer 
survivors, the elderly, and women [3, 4]. 

Multimodality imaging plays a crucial role in the evaluation and 
management of various CVDs. The use of multiple imaging modalities 
allows for a comprehensive assessment of cardiac structure and 
function, aiding in the diagnosis, treatment, and monitoring of patients 
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with heart conditions (Figure 1) [5]. In the context of congenital heart 
disease, the ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/
SOPE 2020 appropriate use criteria emphasizes the importance of 
multimodality imaging in the follow-up care of patients. This approach 
ensures a thorough evaluation of cardiac abnormalities and guides 
appropriate clinical decision-making [6]. The impact of multimodality 
imaging in the assessment of cardiovascular involvement in COVID-19 
is highlighted in a study [7]. By utilizing various imaging techniques 
such as cardiac MRI and CT, researchers aim to identify cardiac 
pathophysiological mechanisms related to COVID-19 infections, 
providing valuable insights into the disease process [8, 9]. 

Furthermore, multimodality imaging has been instrumental in 
improving the definition and functional assessment of left ventricular 
non-compaction cardiomyopathy [10]. This approach allows for a 
more accurate characterization of cardiac abnormalities, leading to 
better management strategies for patients with this condition. In 
the realm of radiotherapy-induced cardiotoxicity, multimodality 
cardiovascular imaging plays a crucial role in screening for structural 
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and functional abnormalities secondary to radiation therapy [11]. 
By utilizing echocardiography, cardiovascular CT, cardiac MRI, and 
nuclear cardiology, clinicians can effectively monitor and manage 
cardiac complications in cancer patients undergoing radiotherapy [12, 
13]. Overall, the integration of multimodality imaging in the evaluation 
and management of CVDs has proven to be essential. From assessing 
large-vessel vasculitis to guiding thoracoscopic cardiac surgery and 
monitoring Anderson-Fabry disease, the use of multiple imaging 
modalities provides valuable clinical information for healthcare 
providers [14-16]. 

Multimodality imaging is vital for detecting ischemic and valvular 
heart disease in cancer patients, who are at increased risk due to 
shared risk factors and treatment-related cardiovascular toxicity. This 
approach aids in individual risk stratification and multidisciplinary 
decision-making, ensuring timely intervention and management [17]. 
In elderly patients, combining multimodal imaging with biomarker 
detection significantly improves diagnostic accuracy for coronary 
heart disease. Techniques like coronary CT angiography (CCTA) 
and echocardiography, when used alongside biomarkers, enhance 
sensitivity and specificity in diagnosis [18]. Multimodality imaging 
helps in assessing cardiovascular changes associated with aging, such as 
arterial wall thickening and myocardial fibrosis. Techniques like CT and 
ultrasound are used to measure coronary artery calcium and carotid 
intima-media thickness, aiding in advanced risk stratification and 
preventive strategy formulation [19]. Recent advancements in imaging 
modalities, including CCTA and MRI, have improved the detection and 
quantification of atherosclerotic plaques. These techniques help assess 
plaque stability and predict adverse cardiovascular events, facilitating 
personalized patient care [20]. 

Multimodality imaging is crucial for the early diagnosis and follow-

up of radiation-induced heart disease [21, 22]. Techniques such as 
speckle-tracking echocardiography and cardiac magnetic resonance 
myocardial strain assessment provide valuable insights into subclinical 
disease and guide preventive measures [21]. Advanced imaging 
techniques allow for a detailed evaluation of cardiac chamber volumes, 
ventricular function, and tissue structure in cardiomyopathies. This 
comprehensive assessment aids in identifying specific etiologies and 
guiding therapeutic decisions [23]. 

This comprehensive approach enhances diagnostic accuracy, 
improves treatment outcomes, and ensures optimal care for patients 
with various cardiac conditions. While multimodality imaging offers 
numerous advantages, it is essential to consider the challenges and 
limitations associated with its implementation [24]. These include the 
high cost and limited accessibility of advanced imaging technologies, 
which may restrict their widespread use. Additionally, the need for 
specialized training and expertise to interpret multimodal data can be 
a barrier in some healthcare settings [25]. Despite these challenges, the 
potential of multimodality imaging to transform cardiovascular care 
remains significant, warranting continued research and development 
in this field.

Integration of Imaging Techniques for Comprehensive 
Diagnosis

The integration of imaging techniques for comprehensive diagnosis 
in CVDs is a rapidly evolving field that leverages advanced technologies 
to enhance diagnostic accuracy and patient outcomes [26, 27]. This 
integration involves combining various imaging modalities, such as 
ultrasound, CT, MRI, and PET, with emerging technologies like AI 
and deep learning [28]. These advancements allow for a more detailed 
assessment of cardiovascular health, enabling early detection, precise 

Imaging modality Primary applications Advantages Limitations
Echocardiography Assessing cardiac structure, function, and 

hemodynamics
Non-invasive, widely available, 

real-time imaging
Limited by operator dependency and acoustic window

CT Coronary artery disease detection, calcium scoring, 
plaque assessment

High-resolution imaging, fast 
acquisition

Radiation exposure, requires contrast agents

MRI Myocardial tissue characterization, perfusion 
assessment, congenital heart disease evaluation

No radiation, superior soft tissue 
contrast

Expensive, time-consuming, contraindicated in some 
patients (e.g., those with certain implants)

PET Myocardial viability, inflammation, and perfusion 
assessment

High sensitivity for metabolic and 
molecular imaging

High cost, radiation exposure, limited availability

SPECT Myocardial perfusion imaging, ischemia detection Widely available, cost-effective Lower spatial resolution compared to positron emission 
tomography

Table 1: Role of various imaging modalities in CVDs, highlighting their applications, strengths, and limitations.

Figure 1: Various cardiac imaging techniques from different modalities with their characteristics, advantages and disadvantages [5].
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diagnosis, and personalized treatment strategies.

Ultrasound and echocardiography are non-invasive techniques 
crucial for assessing cardiac structure and function. They provide real-
time images of the heart, allowing for the evaluation of blood flow 
and heart valve function, which are essential for diagnosing various 
heart conditions [29, 30]. CT, particularly CCTA, are instrumental in 
visualizing coronary arteries and detecting atherosclerotic plaques. 
These techniques help in assessing plaque stability and predicting 
cardiovascular events [20]. MRI offers detailed images of cardiac 
anatomy and function without radiation exposure. It is particularly 
useful for evaluating myocardial perfusion and characterizing tissue 
properties [20, 31]. PET imaging is used to assess myocardial viability 
and perfusion, providing insights into metabolic activity and blood 
flow in the heart [20, 30].

Recent advancements in molecular imaging approaches, such 
as PET/CT and PET/MRI, have demonstrated their clinical utility in 
various aspects of cancer diagnosis, staging, and therapeutic response 
evaluation [32]. For instance, PET/MRI has been found to perform 
similarly to MRI but better than PET/CT in primary breast cancer 
assessment [32]. Additionally, deep learning algorithms have been 
proposed to estimate synthetic attenuation-corrected PET and CT 
images from non-attenuation corrected PET scans, potentially reducing 
the need for additional imaging in hybrid PET/CT and PET/MRI 
systems [33]. Furthermore, theranostic nanoparticles have emerged 
as a valuable tool for providing imaging contrast in CVDs, utilizing 
techniques such as MRI, PET, and CT [34]. These nanoparticles offer 
a multifaceted approach to diagnosis and treatment, aligning with the 
order of disease development in CVDs [34]. The use of PET imaging 
with PSMA-targeting radiopharmaceuticals has also been explored in 
the detection of hepatocellular carcinoma, showcasing the potential of 
PET in cancer diagnosis [35]. 

While the focus of imaging and staging has traditionally been on 
certain types of cancer, such as anal and rectal carcinomas, there is a 
growing interest in applying advanced imaging techniques to CVDs 
[36]. Current advances in nanotheranostics for molecular imaging 
and therapy of CVDs highlight the potential for integrating multiple 
imaging modalities for a comprehensive approach to diagnosis 
and treatment [37]. Additionally, multimodality imaging has been 
recognized as a valuable tool in assessing metabolic syndrome, further 
emphasizing the importance of combining different imaging techniques 
for a holistic evaluation [38]. In conclusion, the integration of CT, MRI, 
and PET imaging modalities holds great promise for the comprehensive 
diagnosis of CVDs. By leveraging the strengths of each modality and 
exploring innovative approaches, such as deep learning algorithms 
and theranostic nanoparticles, researchers are paving the way for more 

accurate and effective diagnostic strategies in the field of cardiovascular 
imaging.

HIT
HIT in diagnosing CVDs offer significant advantages by combining 

anatomical and functional data, leading to improved diagnostic 
accuracy and patient management (Table 2) [39, 40]. These techniques, 
such as the integration of CT with myocardial perfusion imaging (MPI), 
provide a comprehensive view of coronary artery disease (CAD) by 
assessing both the structure and function of the heart. The integration 
of coronary artery calcium scoring (CACS) with MPI enhances the 
diagnostic sensitivity for detecting obstructive CAD. This combination 
allows for better risk stratification and personalized management 
strategies, such as the initiation of statins and aspirin [41]. The 
combination of CACS with MPI significantly improves the diagnostic 
sensitivity for detecting obstructive CAD. This is particularly beneficial 
as it allows for better identification of patients at risk for cardiac events, 
even when traditional MPI results are normal. The addition of CACS 
has been shown to unmask silent coronary atherosclerosis in patients 
who may otherwise appear healthy based on MPI alone. This highlights 
the incremental diagnostic value of incorporating CACS into standard 
imaging protocols. CACS not only aids in diagnosing CAD but also 
plays a crucial role in predicting potential cardiac events. By assessing 
calcified plaque in the coronary arteries, CACS helps in stratifying 
patient risk more effectively, which is essential for personalized risk 
management. The paper emphasizes the evolving role of HI in guiding 
therapeutic decisions, particularly regarding the use of statins for 
cardiovascular prevention. The integration of CACS with MPI allows 
for a more tailored approach to treatment, optimizing patient care. 
While the results indicate significant benefits from combining CACS 
with MPI, the authors call for further research to fully establish the 
advantages of this HI strategy in clinical assessments of cardiovascular 
risk. In summary, the paper highlights that the incorporation of CACS 
into MPI protocols not only enhances the accuracy of CAD detection 
but also improves risk stratification and therapeutic decision-making, 
ultimately leading to better patient outcomes [41].

HIT, such as PET/CT and PET/MRI provide a comprehensive 
assessment by combining anatomical and functional data. These 
modalities are particularly beneficial in evaluating ischemic heart 
disease, where they improve diagnostic precision and guide therapeutic 
decisions [42, 43]. PET/MRI offers high-quality anatomical and 
functional assessments, with emerging applications in quantifying 
molecular parameters like metabolism and inflammation. This 
modality is increasingly used in clinical practice for myocardial 
tissue characterization [44]. However, despite these benefits, there 

Imaging modality Primary applications Advantages Limitations
PET/CT Myocardial viability, inflammation, and perfusion 

assessment
Combines metabolic and 

anatomical data, high sensitivity
Radiation exposure, high cost, limited availability

PET/MRI Myocardial tissue characterization, inflammation 
imaging

No radiation from MRI, superior 
soft tissue contrast

Expensive, longer scan times, limited accessibility

SPECT/CT Myocardial perfusion imaging, ischemia detection, 
coronary artery assessment

Improved anatomical localization, 
enhanced accuracy

Radiation exposure, lower resolution than PET/CT

CT/MPI CAD evaluation, ischemia detection Combines anatomical and 
functional assessment, better risk 

stratification

Requires contrast agents, radiation exposure

CACS + MPI Risk assessment in CAD, identifying silent 
atherosclerosis

Enhances diagnostic sensitivity, 
improves risk stratification

Limited availability, radiation exposure

Table 2: Key HIT used in diagnosing CVDs, highlighting their applications, strengths, and limitations in clinical practice.
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are limitations, including cost, radiation exposure, and the need for 
specialized equipment and expertise.

A study compared the diagnostic accuracy of three imaging 
methods: single-photon emission CT (SPECT) alone, CTCA alone, 
and hybrid SPECT/CTCA imaging [45]. The results were as follows: 
(i) SPECT alone: Sensitivity with 73%, specificity with 61%, and 
accuracy with 67%. This indicates that while SPECT can identify 
some cases of CAD, it has limitations in specificity and overall 
accuracy. (ii) CTCA alone: Sensitivity with 96%, specificity with 44%, 
and accuracy with 67%. CTCA showed high sensitivity, meaning it 
was good at detecting the presence of disease, but its low specificity 
suggests many false positives. (iii) HI (SPECT/CTCA): Sensitivity with 
95%, specificity with 75%, and accuracy with 84%. HI outperformed 
both SPECT and CTCA alone, providing a more balanced sensitivity 
and specificity, which is crucial for accurate diagnosis. One of the 
significant findings was that HI successfully diagnosed 47 vessels with 
severe calcification that CTCA alone could not evaluate correctly. This 
highlights the advantage of combining the two imaging modalities, as 
HI provides more comprehensive information on coronary stenosis 
and its hemodynamic significance. The study concluded that HI offers 
greater diagnostic accuracy than single-modality evaluations. This is 
particularly important for patients with suspected CAD, as it allows 
for better assessment and management of their condition (Figure 2). 
In summary, the results indicate that HI is a superior diagnostic tool 
for CAD, especially in complex cases with high levels of coronary 
calcification [45].

Recent advancements in imaging techniques have revolutionized 
the diagnosis and management of CVDs. Farber et al. [46] discussed 
the future of cardiac molecular imaging, highlighting the potential 
for improved diagnostic capabilities in CVDs. Badano et al. [47] 
emphasized the importance of advanced imaging techniques, such as 
three-dimensional echocardiography, for a comprehensive assessment 
of right ventricular anatomy and function without geometric 
assumptions. 

Machine learning has also emerged as a valuable tool in the 
diagnosis of CVDs. Nogay and Adeli [48] reviewed the application of 
machine learning in the diagnosis of autism spectrum disorder using 
brain imaging techniques, including HI approaches. Similarly, Slart 
et al. [49] emphasized the role of AI in multimodality cardiovascular 

imaging, particularly in nuclear cardiology and CT techniques. 
Molecular imaging techniques, such as MRI, have been utilized for 
targeted imaging of CVDs. Vazquez-Prada et al. [50] discussed the use 
of iron oxide nanoparticles for molecular imaging of atherosclerosis, 
thrombosis, and myocardial infarction. Greulich et al. [51] highlighted 
the use of hybrid cardiac magnetic resonance/fluorodeoxyglucose PET 
for differentiating active from chronic cardiac sarcoidosis. AI has also 
found applications in cardiovascular MRI. 

Argentiero et al. [52] provided a comprehensive review of 
AI applications in CMR imaging, covering image acquisition, 
reconstruction, segmentation, tissue characterization, diagnostic 
evaluation, and prognostication. Fukushima et al. [53] discussed the 
potential role of non-invasive HI, specifically cardiac PETMR, for 
assessing molecular function, tissue characterization, and hemodynamic 
performance in CVDs. Furthermore, the role of multimodality 
cardiac imaging in the diagnosis and management of left ventricular 
hypertrophy was addressed [54]. Finally, Nayfeh et al. [41] highlighted 
the benefits of HIT, such as CS and myocardial perfusion imaging, for 
a comprehensive assessment of CVDs. Overall, the integration of HIT, 
AI, and molecular imaging has significantly advanced the field of CVDs 
diagnosis and management, offering more precise and comprehensive 
evaluations for patients.

Advantages of HIT

•	 Enhanced diagnostic accuracy: HI such as SPECT/CT and 
PET/CT, combines anatomical and functional imaging, leading to 
higher diagnostic accuracy compared to single-modality imaging. For 
instance, hybrid SPECT/CTCA imaging has shown a sensitivity of 95% 
and specificity of 75% in detecting significant coronary artery stenosis, 
outperforming SPECT or CTCA alone [45]. 

•	 Comprehensive risk assessment: The integration of CACS 
with MPI enhances the detection of atherosclerosis and improves risk 
stratification, allowing for personalized treatment plans. This approach 
helps in identifying silent coronary atherosclerosis in patients with 
normal MPI results [41]. 

•	 Improved prognostic value: HI provides superior prognostic 
information by combining anatomical and functional data, which 
is crucial for assessing the risk of future cardiac events and guiding 
therapeutic decisions [55]. 

Figure 2: A representative case in which severe calcification in the diagonal branch complicated diagnosis through CTCA. However, a reversible perfusion defect was clearly identified on 
the hybrid image and later confirmed with coronary angiography (CAG) [45].
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•	 Non-invasive nature: Techniques like multi-detector CT 
(MDCT) and MPI offer non-invasive alternatives to traditional invasive 
CAG, reducing the risk of complications such as myocardial infarction 
and stroke [56].

Limitations of HIT

•	 High costs and resource requirements: The implementation 
of HI systems requires significant investment in equipment and trained 
personnel, which can be a barrier for widespread adoption [57]. 

•	 Radiation exposure: Combining multiple imaging modalities 
can lead to increased radiation exposure, raising concerns about patient 
safety, especially in repeated examinations [57]. 

•	 Limited accessibility: The availability of HI is often restricted 
to specialized centers, limiting access for patients in remote or 
underserved areas [58]. 

•	 Complexity in interpretation: The integration of multiple data 
sets requires advanced software and expertise to accurately interpret 
the results, which can complicate the diagnostic process [55].

While HIT offers substantial benefits in diagnosing CVDs, it 
is essential to consider the balance between their advantages and 
limitations. The high costs and increased radiation exposure are 
significant concerns that need to be addressed to optimize their clinical 
utility. Additionally, the selection of patients who would benefit most 
from HI remains a topic of debate, emphasizing the need for further 
research to refine these techniques and establish clear guidelines for 
their use [57, 58].

Role of Multimodality Imaging in Personalized 
Medicine

Multimodality imaging combines various imaging techniques such 
as MRI, CT, PET, and molecular imaging to provide a detailed and 
holistic view of a patient’s condition. This integration allows for more 
accurate diagnosis and assessment of diseases, particularly in complex 
cases like cancer and CVDs [59, 60]. By providing detailed insights into 
the anatomical and functional aspects of the heart, integrated imaging 
techniques facilitate personalized prevention strategies and treatment 
plans. This approach helps in tailoring interventions to individual 
patient needs, potentially improving outcomes [29]. The role of 
multimodality imaging in personalized medicine in CVDs is a rapidly 
evolving field that holds great promise for improving patient outcomes. 
Recent advancements in AI have revolutionized cardiovascular 
imaging, particularly in the realm of multimodality imaging. Xu et 
al. [61] provides a comprehensive review of the applications of AI 
in multimodality cardiovascular imaging, highlighting the state-
of-the-art techniques that are enhancing diagnostic accuracy and 
treatment planning. Sex-related differences in CVDs, such as dilated 
cardiomyopathy, have been a focus of recent research. D’Amario et al. 
[62] discuss the implications of these differences, particularly in the 
context of chemotherapy-induced heart failure, and emphasize the 
importance of personalized medicine in managing these conditions. 
Understanding these sex-related disparities is crucial for tailoring 
treatment strategies to individual patients. Incorporating physics-based 
flow models into cardiovascular medicine has also shown promise in 
improving diagnostic capabilities. 

Vardhan and Randles [63] explore the current practices and 
challenges associated with these models, highlighting their potential to 
enhance our understanding of CVDs and guide personalized treatment 

approaches. AI has also made significant strides in the realm of cardiac 
MRI. Cau et al. [64] provides an overview of the applications of AI 
in this field, emphasizing its ability to streamline image acquisition, 
reconstruction, and analysis. These advancements have the potential 
to reduce costs and improve decision-making processes for clinicians. 
Multi-modality cardiac imaging has emerged as a valuable tool in the 
management of diabetic heart disease. Wamil et al. [65] discuss the 
utility of these imaging techniques in characterizing both ischemic and 
non-ischemic causes of diabetic heart disease, highlighting their role in 
early detection and treatment planning. As the field of cardiovascular 
imaging continues to advance, it is essential to consider the unique 
needs of specific patient populations. Massalha et al. [66] focus on 
cardiovascular imaging in women, emphasizing the importance of 
tailored imaging approaches to address sex-related differences in CVDs. 

While multimodality imaging significantly advances personalized 
medicine, it is important to consider the limitations and challenges 
associated with its implementation. The complexity of integrating 
diverse data types and the need for sophisticated computational tools 
can pose barriers to widespread adoption. Additionally, ensuring 
data privacy and security remains a critical concern as more sensitive 
patient information is utilized in personalized healthcare approaches. 
Addressing these challenges will be essential to fully realize the potential 
of multimodality imaging in personalized medicine. Furthermore, the 
integration of computational biology, AI, and multimodality imaging 
techniques holds great promise for personalized medicine in CVDs 
[67, 68]. By leveraging these cutting-edge technologies, clinicians can 
enhance diagnostic accuracy, tailor treatment strategies to individual 
patients, and ultimately improve patient outcomes.

Role of AI in Automating Image Analysis
The use of AI, particularly convolutional neural networks (CNNs), 

has shown promise in enhancing the accuracy of CVDs diagnosis. 
These models can analyze large datasets of cardiovascular images to 
predict disease presence with high precision, outperforming traditional 
methods [69, 70]. The integration of multimodal data is supported 
by advanced computational methods, including deep learning and 
multikernel learning, which enhance the ability to process and 
analyze complex datasets. These techniques facilitate the extraction 
of meaningful insights from diverse data sources, improving the 
generalization and transferability of medical models across different 
tasks (Table 3) [71, 72]. The development of frameworks like MarbliX, 
which integrates histopathology images with genomic data, exemplifies 
the potential of multimodal approaches to provide in-depth insights 
and reduce variability in diagnoses [73]. Integrating radiology images 
with electrocardiogram (ECG) data through AI-driven techniques 
allows for a comprehensive analysis of cardiovascular health, improving 
diagnostic accuracy and enabling early intervention [74]. 

The integration of AI with multimodal imaging enhances the 
prediction and diagnosis of CVDs. Techniques like deep multimodal 
fusion, which combine radiology and ECG data, have shown superior 
accuracy in detecting CVDs compared to traditional methods [74]. The 
research paper presents significant findings regarding the detection of 
CVDs through a novel approach that integrates radiology and ECG 
data using deep learning techniques. The proposed methodology 
demonstrated an impressive accuracy rate of 90.49% in diagnosing 
CVDs. This level of accuracy indicates that the model effectively 
distinguishes between healthy and diseased conditions, surpassing 
many existing methods in the field. The study emphasizes the 
importance of using multiple data sources, specifically X-ray images 
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and ECGs. By combining these modalities, the model can extract 
latent information that may not be apparent when using a single data 
source. This multimodal approach enhances the overall diagnostic 
capability. The results indicate that the proposed AI-driven approach 
outperforms other state-of-the-art methods currently used for CVDs 
detection. This suggests that integrating different types of medical data 
can lead to better diagnostic outcomes. The paper also highlights the 
challenges associated with traditional diagnostic methods, such as the 
limited accessibility of CT scans for the general public. By focusing on 
X-ray images and ECGs, which are more widely available, the study 
aims to improve early diagnosis and accessibility for patients. The 
findings support the potential of AI-driven biomarkers in enhancing 
the efficiency of CVDs diagnosis. This could lead to more timely 
interventions and better patient outcomes, addressing the growing 
health risks associated with CVDs. In summary, the results of this 
study indicate a promising advancement in the field of CVDs detection 
through the innovative use of deep multimodal fusion techniques, 
showcasing high accuracy and improved accessibility for patients [74].

A study by Zhang et al. [75] presented several significant findings 
regarding the predictive capabilities of the AI-ECG model for assessing 
the 10-year risk of atherosclerotic CVD (ASCVD). The AI-ECG 
model was developed using a large dataset of 1,163,401 ECGs from 
189,539 patients in a secondary care population in the United States 
of America. The data was split into training/validation and hold-out 
test sets by patient ID to ensure robust model performance. The AI-
ECG model achieved a C-index of 0.721 (with a confidence interval of 
0.719 to 0.723) for predicting future ASCVD events, indicating good 
predictive accuracy. The 5-year AUC was reported as 0.761 (0.758 
to 0.763). In comparison to the ACC/AHA pooled cohort equations 
(PCE), the AI-ECG model outperformed it with a C-index of 0.679 
(0.651 to 0.708) versus PCE’s 0.605 (0.577 to 0.634). When the AI-ECG 
predictions were combined with traditional ASCVD risk factors (like 
blood pressure, cholesterol levels, and diabetes), the predictive value 

improved further, yielding a C-index of 0.686 (0.657 to 0.715). The 
model was externally validated using the United Kingdom Biobank 
dataset, where it showed a C-index of 0.655 (0.637 to 0.673). Notably, it 
significantly outperformed the Stanford Estimator of ECG Risk model, 
which had a C-index of 0.547 (0.527 to 0.567). The findings suggest 
that AI-ECG models can provide accurate risk assessments for ASCVD, 
potentially aiding in the prevention of adverse cardiovascular events 
in high-risk individuals while avoiding unnecessary treatments in low-
risk patients. These results highlight the potential of integrating AI with 
traditional ECG analysis to enhance cardiovascular risk prediction and 
improve patient outcomes [75].

The combination of advanced imaging technologies and AI 
enhances diagnostic precision, streamlines workflow, and supports 
research advancements in cardiology. This integration is crucial for 
accurate risk stratification and therapy guidance [76, 77]. While 
the integration of imaging techniques with AI in CVD diagnosis 
offers numerous benefits, it also presents challenges such as the 
need for specialized equipment and expertise, potential high costs, 
and the requirement for large datasets to train AI models effectively. 
Additionally, the accessibility of advanced imaging technologies 
may be limited in certain regions, posing a barrier to widespread 
implementation. Despite these challenges, the continued development 
and integration of these technologies hold significant promise for 
improving cardiovascular care and patient outcomes globally.

AI Driven Risk Prediction Models Using Imaging Data
AI-driven risk prediction models using imaging data in CVDs 

represent a significant advancement in medical diagnostics, offering 
enhanced accuracy and personalized care. These models leverage 
machine learning and deep learning techniques to analyze complex 
imaging data, such as cardiac CT, MRI, and retinal images, to predict 
cardiovascular risks and outcomes. By integrating diverse data sources, 
AI models can identify subtle patterns and abnormalities that traditional 

Application area Role of AI Description
Cardiac imaging (MRI, CT, and 

ECG)
Heart disease detection and diagnosis AI models analyze cardiac images to detect abnormalities such as coronary artery disease, 

heart failure, and myocardial infarction
Plaque detection in coronary 

arteries
Identifying plaque formation and stenosis AI aids in detecting and quantifying plaque in coronary arteries, helping diagnose 

atherosclerosis and assess its severity
Automated measurement of 

cardiac structures
Quantifying cardiac dimensions AI automates the measurement of heart chambers, valve structures, and other key 

dimensions in cardiac imaging, reducing human error and enhancing precision
Arrhythmia detection ECG interpretation AI algorithms analyze ECG data to detect arrhythmias (e.g., atrial fibrillation, ventricular 

tachycardia) and predict risks
Cardiac risk prediction Predictive analytics for risk assessment AI analyzes medical images, patient history, and other biomarkers to predict risks for heart 

attack, stroke, or other cardiovascular events
Heart function assessment Ejection fraction and ventricular function AI automatically assesses left ventricular ejection fraction and other functional parameters 

to evaluate heart function in heart failure patients
Automated image segmentation Segmenting heart structures for diagnosis AI performs image segmentation to identify and isolate specific heart structures (e.g., 

myocardium, blood vessels, etc.) to facilitate detailed analysis
Automated CTA Analyzing coronary arteries for blockages AI automates the analysis of CTA scans, detecting coronary artery blockages, and assessing 

the severity for better treatment planning
Cardiac MRI analysis Scar tissue detection and myocardial infarction 

evaluation
AI detects myocardial scars and infarction areas from MRI scans, assisting in the diagnosis 

of heart attacks and chronic heart disease
3D cardiac imaging Creating 3D models for personalized treatment AI creates 3D models of the heart to assess complex heart conditions, allowing for 

personalized treatment plans or pre-surgical simulations
Coronary vessel analysis Assessing blood flow and vessel health AI evaluates coronary vessel health and blood flow patterns, aiding in the diagnosis of 

conditions like coronary artery disease and microvascular dysfunction
Monitoring heart disease 

progression
Tracking disease evolution over time AI compares sequential heart images to track disease progression, such as the increase of 

artery stenosis or changes in heart function over time
Automated interpretation of 

echocardiograms
Analyzing heart valve function and cardiac output AI automates the analysis of echocardiograms to detect issues with heart valves, such as 

stenosis or regurgitation, and assess overall cardiac output

Table 3: Overview of how AI enhances the detection, diagnosis, and monitoring of CVDs by automating the analysis of medical images, improving accuracy, efficiency, and patient 
outcomes.
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methods might miss, thus improving early diagnosis and intervention 
strategies. The section explores the various aspects of AI-driven risk 
prediction models using imaging data in CVDs.

AI models utilizing cardiac CT and MRI data have shown superior 
performance in predicting major adverse cardiovascular events (MACE) 
compared to traditional risk scores. For instance, a model incorporating 
both CCTA and stress cardiac MRI data achieved a higher area under 
the receiver operating characteristic curve area under the curve (AUC) 
of 0.86 for MACE prediction, outperforming existing scores like the 
Framingham Risk Score [78]. The study included 2,210 patients who 
underwent cardiac MRI, out of which 2,038 completed follow-ups. The 
mean age of these patients was 70 years, with a significant portion being 
female (53.5%). During the follow-up period, 281 patients (13.8%) 
experienced MACE, which included cardiovascular death and nonfatal 
myocardial infarction. The ML model, which utilized data from both 
stress cardiac MRI and CCTA, achieved an AUC of 0.86 for predicting 
MACE. This performance was significantly better than several 
traditional risk assessment tools: (i) European Society of Cardiology 
score: AUC 0.55, (ii) QRISK3 score: AUC 0.60, (iii) Framingham 
Risk Score: AUC 0.50, (iv) Segment involvement score: AUC 0.71, 
and (v) CCTA data alone: AUC 0.76. AUC 0.83, the p-values for these 
comparisons ranged from <0 .001 to 0.004, indicating strong statistical 
significance. The ML model also demonstrated good performance in 
two independent external validation datasets, achieving AUCs of 0.84 
and 0.92, further confirming its robustness and reliability in predicting 
MACE. The study concluded that the ML model, which integrates 
both CCTA and stress cardiac MRI data, outperformed traditional 
methods and existing risk scores in predicting MACE for patients 
with newly diagnosed CAD, highlighting the potential of ML in 
enhancing cardiovascular risk stratification. These results underscore 
the importance of multimodality imaging and advanced analytical 
techniques in improving patient outcomes in cardiovascular care [78].

AI advancements have enabled the use of noncardiac CT scans for 
CACS, broadening access to cardiovascular screening [79]. The review 
highlights the successful application of AI models, particularly CNNs 
and U-Net architectures, in detecting coronary artery calcium from 
noncardiac CT scans. These models have shown promising results 
in improving the accuracy and efficiency of CACS, which is crucial 
for cardiovascular risk assessment. Broader Accessibility: One of the 
significant results discussed is the potential for AI to extend CACS 
detection beyond traditional cardiac CT scans to more widely available 
imaging modalities, such as those used in lung cancer screening. This 
advancement could democratize access to cardiovascular screening, 
allowing for earlier risk identification in a broader population. The 
incorporation of AI-driven CACS detection into routine clinical practice 
is expected to enhance preventive cardiology. The results suggest that 
this approach could lead to better healthcare resource optimization 
and improved patient outcomes by facilitating earlier identification of 
individuals at risk for CVDs. The paper also outlines several technical 
challenges that need to be addressed for successful implementation, 
including imaging variability, data privacy issues, and potential biases 
in AI models. These challenges highlight the need for ongoing research 
and development to ensure the reliability and fairness of AI applications 
in clinical settings. The review emphasizes the necessity for further 
research in standardization and validation of AI models across diverse 
populations. This is crucial to ensure that the benefits of AI-driven 
CACS detection are realized equitably and effectively in various clinical 
contexts. Overall, the results of the paper underscore the transformative 
potential of AI in enhancing CACS and expanding its application in 

preventive cardiology, while also addressing the challenges that must be 
overcome for successful integration into clinical practice [79].

Deep learning models analyzing retinal images can predict 
cardiovascular risk by detecting vascular changes linked to CVDs. 
These models, using CNNs, provide a non-invasive method for 
risk assessment, offering insights into the underlying pathological 
mechanisms of CVD progression [80]. The study highlights the 
ability of the proposed models to detect subtle vascular changes and 
abnormalities that are linked to cardiovascular risk factors. This 
capability is crucial for early intervention and prevention strategies in 
CVDs. The framework developed in this research aims to streamline 
the process of cardiovascular risk assessment. By utilizing retinal 
imaging, the study provides a more accessible method for evaluating 
cardiovascular health, which could lead to improved patient outcomes. 
The research not only focuses on risk prediction but also offers insights 
into the underlying pathological mechanisms that contribute to the 
progression of CVDs. This understanding can enhance personalized 
healthcare approaches and treatment plans. The paper emphasizes the 
importance of rigorous validation and performance assessments of the 
deep learning models. These evaluations are essential to ensure the 
reliability and accuracy of the predictive models developed for retinal 
image analysis. In summary, the results of this study indicate that deep 
learning-based retinal image analysis holds significant promise for 
improving cardiovascular risk prediction and enhancing personalized 
healthcare strategies. The findings underscore the potential of 
integrating advanced technology into routine clinical practice for better 
health outcomes [80].

A study by Vaishali et al. [81] presents significant findings regarding 
the effectiveness of an AI-powered prediction model for assessing the 
risk of CVDs. The AI model achieved an impressive accuracy rate of 
92%. This indicates that the model correctly identified high-risk patients 
in a large majority of cases, showcasing its reliability in risk assessment. 
The model demonstrated an extraordinary AUC of 0.95. This score 
reflects the model’s ability to distinguish between patients who are at 
risk of CVDs and those who are not, indicating a high level of predictive 
power. The AI algorithm outperformed traditional risk assessment 
tools, such as the Framingham risk score. This suggests that the AI 
model can identify patients at high risk more effectively than existing 
methods, which is crucial for timely intervention. The model was 
rigorously validated on a variety of datasets that included demographic, 
clinical, and lifestyle information. This diverse validation enhances 
the generalizability of the model’s findings, making it applicable to 
different populations. The results indicate that the integration of AI in 
cardiovascular health care could lead to more personalized prevention 
strategies and improved patient outcomes. This transformation could 
also encourage funding for programs focused on early intervention and 
tailored treatment plans. In summary, the study highlights the potential 
of AI in revolutionizing CVDs risk assessment through high accuracy, 
superior performance compared to traditional methods, and the ability 
to provide personalized care. These results underscore the importance 
of leveraging advanced technologies in healthcare to enhance patient 
outcomes [81].

Challenges in Integrating AI into Clinical Workflows
Integrating AI into clinical workflows for CVDs presents numerous 

challenges, despite its potential to revolutionize diagnosis, treatment, 
and management. These challenges span technical, ethical, and 
practical domains, impacting the seamless adoption of AI technologies 
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in healthcare settings. The integration of AI into clinical workflows 
requires addressing issues such as data quality, algorithm transparency, 
and the need for interdisciplinary collaboration. Below are the key 
challenges identified in the integration of AI into clinical workflows for 
CVDs.

Data quality and interoperability

•	 AI systems rely heavily on high-quality data from diverse 
sources such as electronic health records, imaging studies, and wearable 
devices. However, data quality and interoperability remain significant 
challenges, as inconsistent data formats and incomplete datasets can 
hinder AI performance and integration into clinical workflows [82, 83]. 

•	 The integration of multimodal AI systems, which utilize 
various data types, is still limited due to the complexity of managing 
and harmonizing these diverse data sources [84].

Ethical and privacy concerns

•	 Ethical issues, including patient privacy and data security, are 
paramount when integrating AI into healthcare. The potential for data 
breaches and misuse of sensitive health information poses significant 
risks that must be addressed to maintain patient trust and comply with 
regulatory standards [85]. 

•	 Algorithm bias and the lack of transparency in AI decision-
making processes can lead to inequitable healthcare outcomes, 
necessitating the development of explainable AI models that clinicians 
and patients can trust [83, 85].

Technical and infrastructure challenges

•	 Implementing AI-driven solutions requires robust 
infrastructure and technological support, which may not be readily 
available in all healthcare settings. This includes the need for advanced 
computing resources and integration capabilities to support AI 
applications [86]. 

•	 The complexity of AI models, particularly deep learning 
algorithms, can make them difficult to interpret and validate, posing 
challenges for their acceptance and use in clinical practice [87, 88].

Regulatory and validation barriers

•	 Regulatory hurdles, including the need for rigorous validation 
and approval processes, can delay the deployment of AI technologies 
in clinical settings. Ensuring that AI models meet safety and efficacy 
standards is crucial for their integration into healthcare systems [82, 
83]. 

•	 The lack of prospective human validation studies limits the 
evidence base for AI’s effectiveness compared to traditional practices, 
which is necessary for gaining clinician and patient confidence [88].

Training and adoption by healthcare professionals

•	 The successful integration of AI into clinical workflows 
requires healthcare professionals to be adequately trained in using these 
technologies. The learning curve associated with new AI tools can be a 
barrier to their widespread adoption [85].

•	 Interdisciplinary collaboration among clinicians, researchers, 
and policymakers is essential to overcome these challenges and facilitate 
the effective use of AI in cardiovascular care [82].

While AI holds great promises for transforming cardiovascular 

healthcare, these challenges highlight the need for careful consideration 
and strategic planning in its integration. Addressing these issues 
requires a concerted effort from all stakeholders involved in healthcare 
delivery. Additionally, exploring alternative perspectives, such as the 
potential for AI to empower patients directly through self-monitoring 
and diagnosis, could offer new avenues for integrating AI into healthcare 
systems. This approach could alleviate some of the burdens on clinical 
workflows and enhance patient engagement in their own care [87].

Conclusions
The review comprehensively highlights the advancements and 

integration of multimodality imaging and AI in CVDs diagnosis and 
management. Multimodality imaging, encompassing ECG, CT, MRI, 
and PET, has revolutionized cardiovascular diagnostics by providing 
a holistic view of cardiac structure and function. The combination 
of these techniques enables early disease detection, precise risk 
stratification, and improved therapeutic decision-making. Furthermore, 
HI approaches, such as PET/CT and SPECT/CT, enhance diagnostic 
accuracy by merging anatomical and functional data, leading to better 
patient outcomes. Personalized medicine has also benefited significantly 
from multimodal imaging, allowing for tailored interventions based 
on patient-specific risk profiles and disease characteristics. However, 
challenges such as high costs, limited accessibility, and the need for 
specialized expertise continue to hinder the widespread adoption of 
these advanced imaging modalities. 

The incorporation of AI into cardiovascular imaging has further 
optimized diagnostic precision, risk assessment, and workflow 
efficiency. AI-driven image analysis, deep learning algorithms, and 
predictive models have shown great potential in improving diagnostic 
accuracy and automating complex processes, reducing human error, 
and enhancing clinical decision-making. Additionally, AI-based 
risk prediction models utilizing imaging data have demonstrated 
superior performance in forecasting adverse cardiovascular events, 
ultimately aiding in preventive strategies. Despite these advantages, 
the integration of AI into clinical practice presents hurdles, including 
data standardization, regulatory constraints, ethical considerations, 
and the need for adequate clinician training. Addressing these 
challenges through ongoing research, technological advancements, 
and interdisciplinary collaboration will be crucial for harnessing 
the full potential of AI and multimodality imaging in transforming 
cardiovascular care.
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