International Journal of Integrative

Cardiology

)

LITERATURE

I Schelars

DOI: https://doi.org/10.47275/2690-862X-151

Review Article

Volume 7 Issue 2

Multimodality Imaging and Artificial Intelligence in
Cardiovascular Disease: Advances, Integration, and
Future Directions

Swarna Shree!, Ishrath Fathima?*, Challaboina Lakshmi Chandana®* and Sadhvika Jeripeti*

"Meenakshi Medical College Hospital and Research Institute, Enathur, Tamil Nadu, India
2Shadan Institute of Medical Sciences, Hyderabad, Telangana, India

*Davao Medical School Foundation Inc, Davao, Philippines

“Mamata Academy of Medical Sciences, Hyderabad, Telangana, India

Abstract

A comprehensive review is essential to understand the evolving role of multimodality imaging and artificial intelligence (Al) in cardiovascular diseases (CVDs)
diagnosis and management. This review highlights the integration of various imaging techniques and Al-driven advancements to enhance diagnostic accuracy, risk
stratification, and personalized treatment approaches. By addressing current innovations, challenges, and future directions, this review provides a foundation for
optimizing cardiovascular imaging and improving patient outcomes. This review explores the significance of multimodality imaging in CVDs, emphasizing its role in
combining echocardiography, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for a more comprehensive
assessment. The integration of Al in cardiovascular imaging is examined, particularly in automating image analysis, enhancing diagnostic precision, and facilitating
risk prediction models. The review further discusses hybrid imaging techniques (HIT) and their ability to merge anatomical and functional data, improving disease
detection and management. The application of multimodality imaging in personalized medicine, with a focus on patient-specific diagnostics and treatment strategies,
is also addressed. Additionally, challenges such as accessibility, cost, and Al integration into clinical workflows are analyzed. The review concludes by outlining
future research directions aimed at refining imaging technologies and Al applications for better cardiovascular care.
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with heart conditions (Figure 1) [5]. In the context of congenital heart
disease, the ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/
SOPE 2020 appropriate use criteria emphasizes the importance of
multimodality imaging in the follow-up care of patients. This approach
ensures a thorough evaluation of cardiac abnormalities and guides
appropriate clinical decision-making [6]. The impact of multimodality
imaging in the assessment of cardiovascular involvement in COVID-19
is highlighted in a study [7]. By utilizing various imaging techniques
such as cardiac MRI and CT, researchers aim to identify cardiac
pathophysiological mechanisms related to COVID-19 infections,
providing valuable insights into the disease process [8, 9].

Introduction
Multimodality Imaging in CVDs

Multimodality imaging in CVDs is a rapidly evolving field that
leverages various imaging techniques to enhance the diagnosis,
management, and risk stratification of cardiovascular conditions [1,
2]. This approach is particularly beneficial in complex cases where
single-modality imaging may not provide comprehensive insights.
Multimodality imaging combines data from different imaging
techniques, such as echocardiography, CT, MRI, and PET, to offer a
more holistic view of cardiovascular health (Table 1). This integration is
crucial for early detection, accurate diagnosis, and effective management
of CVDs, especially in populations with specific needs, such as cancer
survivors, the elderly, and women 3, 4].

Furthermore, multimodality imaging has been instrumental in
improving the definition and functional assessment of left ventricular
non-compaction cardiomyopathy [10]. This approach allows for a

Multimodality imaging plays a crucial role in the evaluation and ~ more accurate characterization of cardiac abnormalities, leading to

management of various CVDs. The use of multiple imaging modalities
allows for a comprehensive assessment of cardiac structure and
function, aiding in the diagnosis, treatment, and monitoring of patients
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better management strategies for patients with this condition. In
the realm of radiotherapy-induced cardiotoxicity, multimodality
cardiovascular imaging plays a crucial role in screening for structural
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Table 1: Role of various imaging modalities in CVDs, highlighting their applications, strengths, and limitations.

Imaging modality Primary applications Advantages Limitations
Echocardiography Assessing cardiac structure, function, and Non-invasive, widely available, = Limited by operator dependency and acoustic window
hemodynamics real-time imaging
CT Coronary artery disease detection, calcium scoring, High-resolution imaging, fast Radiation exposure, requires contrast agents
plaque assessment acquisition
MRI Myocardial tissue characterization, perfusion No radiation, superior soft tissue | Expensive, time-consuming, contraindicated in some
assessment, congenital heart disease evaluation contrast patients (e.g., those with certain implants)
PET Myocardial viability, inflammation, and perfusion High sensitivity for metabolic and High cost, radiation exposure, limited availability
assessment molecular imaging
SPECT Myocardial perfusion imaging, ischemia detection Widely available, cost-effective | Lower spatial resolution compared to positron emission
tomography

Preliminary assessment imaging technique

Radiation exposure; only 2D; poor soft tissue contrast

Structural and functional cardiac imaging technique

ation duration; limited

repeated patient breath holds

Nuclear cardiac imaging technique
tar ind obese popu

High costs; limited availability

B : Characteristics 1l

Cross-sectional cardiac imaging technique

Radiation exposure; need for heart rate control

Real-time cardiac motion estimation imaging
technique

1 diat free: portabl
¢ I I C

Small FOV:; poor signal-to-noise ratio; artifacts;

high sensitivity to operators and patients

Stress myocardial perfusion imaging technique

Radiation exposure; high costs; limited availability

: Advantage [l : Disadvantage

Figure 1: Various cardiac imaging techniques from different modalities with their characteristics, advantages and disadvantages [5].

and functional abnormalities secondary to radiation therapy [11].
By utilizing echocardiography, cardiovascular CT, cardiac MRI, and
nuclear cardiology, clinicians can effectively monitor and manage
cardiac complications in cancer patients undergoing radiotherapy [12,
13]. Overall, the integration of multimodality imaging in the evaluation
and management of CVDs has proven to be essential. From assessing
large-vessel vasculitis to guiding thoracoscopic cardiac surgery and
monitoring Anderson-Fabry disease, the use of multiple imaging
modalities provides valuable clinical information for healthcare
providers [14-16].

Multimodality imaging is vital for detecting ischemic and valvular
heart disease in cancer patients, who are at increased risk due to
shared risk factors and treatment-related cardiovascular toxicity. This
approach aids in individual risk stratification and multidisciplinary
decision-making, ensuring timely intervention and management [17].
In elderly patients, combining multimodal imaging with biomarker
detection significantly improves diagnostic accuracy for coronary
heart disease. Techniques like coronary CT angiography (CCTA)
and echocardiography, when used alongside biomarkers, enhance
sensitivity and specificity in diagnosis [18]. Multimodality imaging
helps in assessing cardiovascular changes associated with aging, such as
arterial wall thickening and myocardial fibrosis. Techniques like CT and
ultrasound are used to measure coronary artery calcium and carotid
intima-media thickness, aiding in advanced risk stratification and
preventive strategy formulation [19]. Recent advancements in imaging
modalities, including CCTA and MRI, have improved the detection and
quantification of atherosclerotic plaques. These techniques help assess
plaque stability and predict adverse cardiovascular events, facilitating
personalized patient care [20].

Multimodality imaging is crucial for the early diagnosis and follow-
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up of radiation-induced heart disease [21, 22]. Techniques such as
speckle-tracking echocardiography and cardiac magnetic resonance
myocardial strain assessment provide valuable insights into subclinical
disease and guide preventive measures [21]. Advanced imaging
techniques allow for a detailed evaluation of cardiac chamber volumes,
ventricular function, and tissue structure in cardiomyopathies. This
comprehensive assessment aids in identifying specific etiologies and
guiding therapeutic decisions [23].

This comprehensive approach enhances diagnostic accuracy,
improves treatment outcomes, and ensures optimal care for patients
with various cardiac conditions. While multimodality imaging offers
numerous advantages, it is essential to consider the challenges and
limitations associated with its implementation [24]. These include the
high cost and limited accessibility of advanced imaging technologies,
which may restrict their widespread use. Additionally, the need for
specialized training and expertise to interpret multimodal data can be
a barrier in some healthcare settings [25]. Despite these challenges, the
potential of multimodality imaging to transform cardiovascular care
remains significant, warranting continued research and development
in this field.

Integration of Imaging Techniques for Comprehensive
Diagnosis

The integration of imaging techniques for comprehensive diagnosis
in CVDs is a rapidly evolving field that leverages advanced technologies
to enhance diagnostic accuracy and patient outcomes [26, 27]. This
integration involves combining various imaging modalities, such as
ultrasound, CT, MRI, and PET, with emerging technologies like AI
and deep learning [28]. These advancements allow for a more detailed
assessment of cardiovascular health, enabling early detection, precise
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diagnosis, and personalized treatment strategies.

Ultrasound and echocardiography are non-invasive techniques
crucial for assessing cardiac structure and function. They provide real-
time images of the heart, allowing for the evaluation of blood flow
and heart valve function, which are essential for diagnosing various
heart conditions [29, 30]. CT, particularly CCTA, are instrumental in
visualizing coronary arteries and detecting atherosclerotic plaques.
These techniques help in assessing plaque stability and predicting
cardiovascular events [20]. MRI offers detailed images of cardiac
anatomy and function without radiation exposure. It is particularly
useful for evaluating myocardial perfusion and characterizing tissue
properties [20, 31]. PET imaging is used to assess myocardial viability
and perfusion, providing insights into metabolic activity and blood
flow in the heart [20, 30].

Recent advancements in molecular imaging approaches, such
as PET/CT and PET/MRI, have demonstrated their clinical utility in
various aspects of cancer diagnosis, staging, and therapeutic response
evaluation [32]. For instance, PET/MRI has been found to perform
similarly to MRI but better than PET/CT in primary breast cancer
assessment [32]. Additionally, deep learning algorithms have been
proposed to estimate synthetic attenuation-corrected PET and CT
images from non-attenuation corrected PET scans, potentially reducing
the need for additional imaging in hybrid PET/CT and PET/MRI
systems [33]. Furthermore, theranostic nanoparticles have emerged
as a valuable tool for providing imaging contrast in CVDs, utilizing
techniques such as MRI, PET, and CT [34]. These nanoparticles offer
a multifaceted approach to diagnosis and treatment, aligning with the
order of disease development in CVDs [34]. The use of PET imaging
with PSMA-targeting radiopharmaceuticals has also been explored in
the detection of hepatocellular carcinoma, showcasing the potential of
PET in cancer diagnosis [35].

While the focus of imaging and staging has traditionally been on
certain types of cancer, such as anal and rectal carcinomas, there is a
growing interest in applying advanced imaging techniques to CVDs
[36]. Current advances in nanotheranostics for molecular imaging
and therapy of CVDs highlight the potential for integrating multiple
imaging modalities for a comprehensive approach to diagnosis
and treatment [37]. Additionally, multimodality imaging has been
recognized as a valuable tool in assessing metabolic syndrome, further
emphasizing the importance of combining different imaging techniques
for a holistic evaluation [38]. In conclusion, the integration of CT, MRI,
and PET imaging modalities holds great promise for the comprehensive
diagnosis of CVDs. By leveraging the strengths of each modality and
exploring innovative approaches, such as deep learning algorithms
and theranostic nanoparticles, researchers are paving the way for more
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accurate and effective diagnostic strategies in the field of cardiovascular
imaging.

HIT

HIT in diagnosing CVDs offer significant advantages by combining
anatomical and functional data, leading to improved diagnostic
accuracy and patient management (Table 2) [39, 40]. These techniques,
such as the integration of CT with myocardial perfusion imaging (MPI),
provide a comprehensive view of coronary artery disease (CAD) by
assessing both the structure and function of the heart. The integration
of coronary artery calcium scoring (CACS) with MPI enhances the
diagnostic sensitivity for detecting obstructive CAD. This combination
allows for better risk stratification and personalized management
strategies, such as the initiation of statins and aspirin [41]. The
combination of CACS with MPI significantly improves the diagnostic
sensitivity for detecting obstructive CAD. This is particularly beneficial
as it allows for better identification of patients at risk for cardiac events,
even when traditional MPI results are normal. The addition of CACS
has been shown to unmask silent coronary atherosclerosis in patients
who may otherwise appear healthy based on MPI alone. This highlights
the incremental diagnostic value of incorporating CACS into standard
imaging protocols. CACS not only aids in diagnosing CAD but also
plays a crucial role in predicting potential cardiac events. By assessing
calcified plaque in the coronary arteries, CACS helps in stratifying
patient risk more effectively, which is essential for personalized risk
management. The paper emphasizes the evolving role of HI in guiding
therapeutic decisions, particularly regarding the use of statins for
cardiovascular prevention. The integration of CACS with MPI allows
for a more tailored approach to treatment, optimizing patient care.
While the results indicate significant benefits from combining CACS
with MPI, the authors call for further research to fully establish the
advantages of this HI strategy in clinical assessments of cardiovascular
risk. In summary, the paper highlights that the incorporation of CACS
into MPI protocols not only enhances the accuracy of CAD detection
but also improves risk stratification and therapeutic decision-making,
ultimately leading to better patient outcomes [41].

HIT, such as PET/CT and PET/MRI provide a comprehensive
assessment by combining anatomical and functional data. These
modalities are particularly beneficial in evaluating ischemic heart
disease, where they improve diagnostic precision and guide therapeutic
decisions [42, 43]. PET/MRI offers high-quality anatomical and
functional assessments, with emerging applications in quantifying
molecular parameters like metabolism and inflammation. This
modality is increasingly used in clinical practice for myocardial
tissue characterization [44]. However, despite these benefits, there

Table 2: Key HIT used in diagnosing CVDs, highlighting their applications, strengths, and limitations in clinical practice.

Imaging modality Primary applications

PET/CT Myocardial viability, inflammation, and perfusion
assessment
PET/MRI Myocardial tissue characterization, inflammation
imaging
SPECT/CT Myocardial perfusion imaging, ischemia detection,
coronary artery assessment
CT/MPI CAD evaluation, ischemia detection
CACS + MPI Risk assessment in CAD, identifying silent

atherosclerosis
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No radiation from MRI, superior

Improved anatomical localization,

Enhances diagnostic sensitivity,

Advantages Limitations

Combines metabolic and Radiation exposure, high cost, limited availability

anatomical data, high sensitivity

Expensive, longer scan times, limited accessibility
soft tissue contrast
Radiation exposure, lower resolution than PET/CT
enhanced accuracy

Combines anatomical and Requires contrast agents, radiation exposure

functional assessment, better risk

stratification

Limited availability, radiation exposure
improves risk stratification
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are limitations, including cost, radiation exposure, and the need for
specialized equipment and expertise.

A study compared the diagnostic accuracy of three imaging
methods: single-photon emission CT (SPECT) alone, CTCA alone,
and hybrid SPECT/CTCA imaging [45]. The results were as follows:
(i) SPECT alone: Sensitivity with 73%, specificity with 61%, and
accuracy with 67%. This indicates that while SPECT can identify
some cases of CAD, it has limitations in specificity and overall
accuracy. (ii) CTCA alone: Sensitivity with 96%, specificity with 44%,
and accuracy with 67%. CTCA showed high sensitivity, meaning it
was good at detecting the presence of disease, but its low specificity
suggests many false positives. (iii) HI (SPECT/CTCA): Sensitivity with
95%, specificity with 75%, and accuracy with 84%. HI outperformed
both SPECT and CTCA alone, providing a more balanced sensitivity
and specificity, which is crucial for accurate diagnosis. One of the
significant findings was that HI successfully diagnosed 47 vessels with
severe calcification that CTCA alone could not evaluate correctly. This
highlights the advantage of combining the two imaging modalities, as
HI provides more comprehensive information on coronary stenosis
and its hemodynamic significance. The study concluded that HI offers
greater diagnostic accuracy than single-modality evaluations. This is
particularly important for patients with suspected CAD, as it allows
for better assessment and management of their condition (Figure 2).
In summary, the results indicate that HI is a superior diagnostic tool
for CAD, especially in complex cases with high levels of coronary
calcification [45].

Recent advancements in imaging techniques have revolutionized
the diagnosis and management of CVDs. Farber et al. [46] discussed
the future of cardiac molecular imaging, highlighting the potential
for improved diagnostic capabilities in CVDs. Badano et al. [47]
emphasized the importance of advanced imaging techniques, such as
three-dimensional echocardiography, for a comprehensive assessment
of right ventricular anatomy and function without geometric
assumptions.

Machine learning has also emerged as a valuable tool in the
diagnosis of CVDs. Nogay and Adeli [48] reviewed the application of
machine learning in the diagnosis of autism spectrum disorder using
brain imaging techniques, including HI approaches. Similarly, Slart
et al. [49] emphasized the role of AI in multimodality cardiovascular

Rest
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imaging, particularly in nuclear cardiology and CT techniques.
Molecular imaging techniques, such as MRI, have been utilized for
targeted imaging of CVDs. Vazquez-Prada et al. [50] discussed the use
of iron oxide nanoparticles for molecular imaging of atherosclerosis,
thrombosis, and myocardial infarction. Greulich et al. [51] highlighted
the use of hybrid cardiac magnetic resonance/fluorodeoxyglucose PET
for differentiating active from chronic cardiac sarcoidosis. Al has also
found applications in cardiovascular MRI.

Argentiero et al. [52] provided a comprehensive review of
Al applications in CMR imaging, covering image acquisition,
reconstruction, segmentation, tissue characterization, diagnostic
evaluation, and prognostication. Fukushima et al. [53] discussed the
potential role of non-invasive HI, specifically cardiac PETMR, for
assessing molecular function, tissue characterization, and hemodynamic
performance in CVDs. Furthermore, the role of multimodality
cardiac imaging in the diagnosis and management of left ventricular
hypertrophy was addressed [54]. Finally, Nayfeh et al. [41] highlighted
the benefits of HIT, such as CS and myocardial perfusion imaging, for
a comprehensive assessment of CVDs. Overall, the integration of HIT,
Al and molecular imaging has significantly advanced the field of CVDs
diagnosis and management, offering more precise and comprehensive
evaluations for patients.

Advantages of HIT

. Enhanced diagnostic accuracy: HI such as SPECT/CT and
PET/CT, combines anatomical and functional imaging, leading to
higher diagnostic accuracy compared to single-modality imaging. For
instance, hybrid SPECT/CTCA imaging has shown a sensitivity of 95%
and specificity of 75% in detecting significant coronary artery stenosis,
outperforming SPECT or CTCA alone [45].

. Comprehensive risk assessment: The integration of CACS
with MPI enhances the detection of atherosclerosis and improves risk
stratification, allowing for personalized treatment plans. This approach
helps in identifying silent coronary atherosclerosis in patients with
normal MPI results [41].

. Improved prognostic value: HI provides superior prognostic
information by combining anatomical and functional data, which
is crucial for assessing the risk of future cardiac events and guiding
therapeutic decisions [55].

Figure 2: A representative case in which severe calcification in the diagonal branch complicated diagnosis through CTCA. However, a reversible perfusion defect was clearly identified on

the hybrid image and later confirmed with coronary angiography (CAG) [45].
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. Non-invasive nature: Techniques like multi-detector CT
(MDCT) and MPI offer non-invasive alternatives to traditional invasive
CAG, reducing the risk of complications such as myocardial infarction
and stroke [56].

Limitations of HIT

. High costs and resource requirements: The implementation
of HI systems requires significant investment in equipment and trained
personnel, which can be a barrier for widespread adoption [57].

. Radiation exposure: Combining multiple imaging modalities
can lead to increased radiation exposure, raising concerns about patient
safety, especially in repeated examinations [57].

. Limited accessibility: The availability of HI is often restricted
to specialized centers, limiting access for patients in remote or
underserved areas [58].

. Complexity in interpretation: The integration of multiple data
sets requires advanced software and expertise to accurately interpret
the results, which can complicate the diagnostic process [55].

While HIT offers substantial benefits in diagnosing CVDs, it
is essential to consider the balance between their advantages and
limitations. The high costs and increased radiation exposure are
significant concerns that need to be addressed to optimize their clinical
utility. Additionally, the selection of patients who would benefit most
from HI remains a topic of debate, emphasizing the need for further
research to refine these techniques and establish clear guidelines for
their use [57, 58].

Role of Multimodality Imaging in Personalized
Medicine

Multimodality imaging combines various imaging techniques such
as MRI, CT, PET, and molecular imaging to provide a detailed and
holistic view of a patient’s condition. This integration allows for more
accurate diagnosis and assessment of diseases, particularly in complex
cases like cancer and CVDs [59, 60]. By providing detailed insights into
the anatomical and functional aspects of the heart, integrated imaging
techniques facilitate personalized prevention strategies and treatment
plans. This approach helps in tailoring interventions to individual
patient needs, potentially improving outcomes [29]. The role of
multimodality imaging in personalized medicine in CVDs is a rapidly
evolving field that holds great promise for improving patient outcomes.
Recent advancements in AI have revolutionized cardiovascular
imaging, particularly in the realm of multimodality imaging. Xu et
al. [61] provides a comprehensive review of the applications of Al
in multimodality cardiovascular imaging, highlighting the state-
of-the-art techniques that are enhancing diagnostic accuracy and
treatment planning. Sex-related differences in CVDs, such as dilated
cardiomyopathy, have been a focus of recent research. DAmario et al.
[62] discuss the implications of these differences, particularly in the
context of chemotherapy-induced heart failure, and emphasize the
importance of personalized medicine in managing these conditions.
Understanding these sex-related disparities is crucial for tailoring
treatment strategies to individual patients. Incorporating physics-based
flow models into cardiovascular medicine has also shown promise in
improving diagnostic capabilities.

Vardhan and Randles [63] explore the current practices and
challenges associated with these models, highlighting their potential to
enhance our understanding of CVDs and guide personalized treatment
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approaches. AI has also made significant strides in the realm of cardiac
MRI. Cau et al. [64] provides an overview of the applications of Al
in this field, emphasizing its ability to streamline image acquisition,
reconstruction, and analysis. These advancements have the potential
to reduce costs and improve decision-making processes for clinicians.
Multi-modality cardiac imaging has emerged as a valuable tool in the
management of diabetic heart disease. Wamil et al. [65] discuss the
utility of these imaging techniques in characterizing both ischemic and
non-ischemic causes of diabetic heart disease, highlighting their role in
early detection and treatment planning. As the field of cardiovascular
imaging continues to advance, it is essential to consider the unique
needs of specific patient populations. Massalha et al. [66] focus on
cardiovascular imaging in women, emphasizing the importance of
tailored imaging approaches to address sex-related differences in CVDs.

While multimodality imaging significantly advances personalized
medicine, it is important to consider the limitations and challenges
associated with its implementation. The complexity of integrating
diverse data types and the need for sophisticated computational tools
can pose barriers to widespread adoption. Additionally, ensuring
data privacy and security remains a critical concern as more sensitive
patient information is utilized in personalized healthcare approaches.
Addressing these challenges will be essential to fully realize the potential
of multimodality imaging in personalized medicine. Furthermore, the
integration of computational biology, Al, and multimodality imaging
techniques holds great promise for personalized medicine in CVDs
[67, 68]. By leveraging these cutting-edge technologies, clinicians can
enhance diagnostic accuracy, tailor treatment strategies to individual
patients, and ultimately improve patient outcomes.

Role of Al in Automating Image Analysis

The use of Al particularly convolutional neural networks (CNNs),
has shown promise in enhancing the accuracy of CVDs diagnosis.
These models can analyze large datasets of cardiovascular images to
predict disease presence with high precision, outperforming traditional
methods [69, 70]. The integration of multimodal data is supported
by advanced computational methods, including deep learning and
multikernel learning, which enhance the ability to process and
analyze complex datasets. These techniques facilitate the extraction
of meaningful insights from diverse data sources, improving the
generalization and transferability of medical models across different
tasks (Table 3) [71, 72]. The development of frameworks like MarbliX,
which integrates histopathology images with genomic data, exemplifies
the potential of multimodal approaches to provide in-depth insights
and reduce variability in diagnoses [73]. Integrating radiology images
with electrocardiogram (ECG) data through Al-driven techniques
allows for a comprehensive analysis of cardiovascular health, improving
diagnostic accuracy and enabling early intervention [74].

The integration of AI with multimodal imaging enhances the
prediction and diagnosis of CVDs. Techniques like deep multimodal
fusion, which combine radiology and ECG data, have shown superior
accuracy in detecting CVDs compared to traditional methods [74]. The
research paper presents significant findings regarding the detection of
CVDs through a novel approach that integrates radiology and ECG
data using deep learning techniques. The proposed methodology
demonstrated an impressive accuracy rate of 90.49% in diagnosing
CVDs. This level of accuracy indicates that the model effectively
distinguishes between healthy and diseased conditions, surpassing
many existing methods in the field. The study emphasizes the
importance of using multiple data sources, specifically X-ray images
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Table 3: Overview of how Al enhances the detection, diagnosis, and monitoring of CVDs by automating the analysis of medical images, improving accuracy, efficiency, and patient

outcomes.

Role of Al

Heart disease detection and diagnosis

Application area
Cardiac imaging (MRI, CT, and
ECG)

Plaque detection in coronary
arteries

Identifying plaque formation and stenosis

Automated measurement of
cardiac structures

Quantifying cardiac dimensions

Arrhythmia detection ECG interpretation

Cardiac risk prediction Predictive analytics for risk assessment

Heart function assessment Ejection fraction and ventricular function

Automated image segmentation Segmenting heart structures for diagnosis

Automated CTA Analyzing coronary arteries for blockages

Cardiac MRI analysis Scar tissue detection and myocardial infarction
evaluation

3D cardiac imaging Creating 3D models for personalized treatment

Coronary vessel analysis Assessing blood flow and vessel health

Monitoring heart disease
progression

Tracking disease evolution over time

Automated interpretation of
echocardiograms

Analyzing heart valve function and cardiac output

and ECGs. By combining these modalities, the model can extract
latent information that may not be apparent when using a single data
source. This multimodal approach enhances the overall diagnostic
capability. The results indicate that the proposed AI-driven approach
outperforms other state-of-the-art methods currently used for CVDs
detection. This suggests that integrating different types of medical data
can lead to better diagnostic outcomes. The paper also highlights the
challenges associated with traditional diagnostic methods, such as the
limited accessibility of CT scans for the general public. By focusing on
X-ray images and ECGs, which are more widely available, the study
aims to improve early diagnosis and accessibility for patients. The
findings support the potential of Al-driven biomarkers in enhancing
the efficiency of CVDs diagnosis. This could lead to more timely
interventions and better patient outcomes, addressing the growing
health risks associated with CVDs. In summary, the results of this
study indicate a promising advancement in the field of CVDs detection
through the innovative use of deep multimodal fusion techniques,
showcasing high accuracy and improved accessibility for patients [74].

A study by Zhang et al. [75] presented several significant findings
regarding the predictive capabilities of the AI-ECG model for assessing
the 10-year risk of atherosclerotic CVD (ASCVD). The AI-ECG
model was developed using a large dataset of 1,163,401 ECGs from
189,539 patients in a secondary care population in the United States
of America. The data was split into training/validation and hold-out
test sets by patient ID to ensure robust model performance. The AI-
ECG model achieved a C-index of 0.721 (with a confidence interval of
0.719 to 0.723) for predicting future ASCVD events, indicating good
predictive accuracy. The 5-year AUC was reported as 0.761 (0.758
to 0.763). In comparison to the ACC/AHA pooled cohort equations
(PCE), the AI-ECG model outperformed it with a C-index of 0.679
(0.651 to 0.708) versus PCE’s 0.605 (0.577 to 0.634). When the AI-ECG
predictions were combined with traditional ASCVD risk factors (like
blood pressure, cholesterol levels, and diabetes), the predictive value
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Description

AT models analyze cardiac images to detect abnormalities such as coronary artery disease,
heart failure, and myocardial infarction

Al aids in detecting and quantifying plaque in coronary arteries, helping diagnose
atherosclerosis and assess its severity

Al automates the measurement of heart chambers, valve structures, and other key
dimensions in cardiac imaging, reducing human error and enhancing precision

Al algorithms analyze ECG data to detect arrhythmias (e.g., atrial fibrillation, ventricular
tachycardia) and predict risks

Al analyzes medical images, patient history, and other biomarkers to predict risks for heart
attack, stroke, or other cardiovascular events

Al automatically assesses left ventricular ejection fraction and other functional parameters
to evaluate heart function in heart failure patients

Al performs image segmentation to identify and isolate specific heart structures (e.g.,
myocardium, blood vessels, etc.) to facilitate detailed analysis

AT automates the analysis of CTA scans, detecting coronary artery blockages, and assessing
the severity for better treatment planning

Al detects myocardial scars and infarction areas from MRI scans, assisting in the diagnosis
of heart attacks and chronic heart disease

Al creates 3D models of the heart to assess complex heart conditions, allowing for
personalized treatment plans or pre-surgical simulations

Al evaluates coronary vessel health and blood flow patterns, aiding in the diagnosis of
conditions like coronary artery disease and microvascular dysfunction

Al compares sequential heart images to track disease progression, such as the increase of
artery stenosis or changes in heart function over time

AT automates the analysis of echocardiograms to detect issues with heart valves, such as
stenosis or regurgitation, and assess overall cardiac output

improved further, yielding a C-index of 0.686 (0.657 to 0.715). The
model was externally validated using the United Kingdom Biobank
dataset, where it showed a C-index of 0.655 (0.637 to 0.673). Notably, it
significantly outperformed the Stanford Estimator of ECG Risk model,
which had a C-index of 0.547 (0.527 to 0.567). The findings suggest
that AI-ECG models can provide accurate risk assessments for ASCVD,
potentially aiding in the prevention of adverse cardiovascular events
in high-risk individuals while avoiding unnecessary treatments in low-
risk patients. These results highlight the potential of integrating AI with
traditional ECG analysis to enhance cardiovascular risk prediction and
improve patient outcomes [75].

The combination of advanced imaging technologies and Al
enhances diagnostic precision, streamlines workflow, and supports
research advancements in cardiology. This integration is crucial for
accurate risk stratification and therapy guidance [76, 77]. While
the integration of imaging techniques with AI in CVD diagnosis
offers numerous benefits, it also presents challenges such as the
need for specialized equipment and expertise, potential high costs,
and the requirement for large datasets to train AI models effectively.
Additionally, the accessibility of advanced imaging technologies
may be limited in certain regions, posing a barrier to widespread
implementation. Despite these challenges, the continued development
and integration of these technologies hold significant promise for
improving cardiovascular care and patient outcomes globally.

AI Driven Risk Prediction Models Using Imaging Data

Al-driven risk prediction models using imaging data in CVDs
represent a significant advancement in medical diagnostics, offering
enhanced accuracy and personalized care. These models leverage
machine learning and deep learning techniques to analyze complex
imaging data, such as cardiac CT, MRI, and retinal images, to predict
cardiovascular risks and outcomes. By integrating diverse data sources,
Al models can identify subtle patterns and abnormalities that traditional
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methods might miss, thus improving early diagnosis and intervention
strategies. The section explores the various aspects of Al-driven risk
prediction models using imaging data in CVDs.

Al models utilizing cardiac CT and MRI data have shown superior
performance in predicting major adverse cardiovascular events (MACE)
compared to traditional risk scores. For instance, a model incorporating
both CCTA and stress cardiac MRI data achieved a higher area under
the receiver operating characteristic curve area under the curve (AUC)
of 0.86 for MACE prediction, outperforming existing scores like the
Framingham Risk Score [78]. The study included 2,210 patients who
underwent cardiac MR, out of which 2,038 completed follow-ups. The
mean age of these patients was 70 years, with a significant portion being
female (53.5%). During the follow-up period, 281 patients (13.8%)
experienced MACE, which included cardiovascular death and nonfatal
myocardial infarction. The ML model, which utilized data from both
stress cardiac MRI and CCTA, achieved an AUC of 0.86 for predicting
MACE. This performance was significantly better than several
traditional risk assessment tools: (i) European Society of Cardiology
score: AUC 0.55, (ii) QRISK3 score: AUC 0.60, (iii) Framingham
Risk Score: AUC 0.50, (iv) Segment involvement score: AUC 0.71,
and (v) CCTA data alone: AUC 0.76. AUC 0.83, the p-values for these
comparisons ranged from <0 .001 to 0.004, indicating strong statistical
significance. The ML model also demonstrated good performance in
two independent external validation datasets, achieving AUCs of 0.84
and 0.92, further confirming its robustness and reliability in predicting
MACE. The study concluded that the ML model, which integrates
both CCTA and stress cardiac MRI data, outperformed traditional
methods and existing risk scores in predicting MACE for patients
with newly diagnosed CAD, highlighting the potential of ML in
enhancing cardiovascular risk stratification. These results underscore
the importance of multimodality imaging and advanced analytical
techniques in improving patient outcomes in cardiovascular care [78].

AT advancements have enabled the use of noncardiac CT scans for
CACS, broadening access to cardiovascular screening [79]. The review
highlights the successful application of AI models, particularly CNNs
and U-Net architectures, in detecting coronary artery calcium from
noncardiac CT scans. These models have shown promising results
in improving the accuracy and efficiency of CACS, which is crucial
for cardiovascular risk assessment. Broader Accessibility: One of the
significant results discussed is the potential for AI to extend CACS
detection beyond traditional cardiac CT scans to more widely available
imaging modalities, such as those used in lung cancer screening. This
advancement could democratize access to cardiovascular screening,
allowing for earlier risk identification in a broader population. The
incorporation of AI-driven CACS detection into routine clinical practice
is expected to enhance preventive cardiology. The results suggest that
this approach could lead to better healthcare resource optimization
and improved patient outcomes by facilitating earlier identification of
individuals at risk for CVDs. The paper also outlines several technical
challenges that need to be addressed for successful implementation,
including imaging variability, data privacy issues, and potential biases
in Al models. These challenges highlight the need for ongoing research
and development to ensure the reliability and fairness of Al applications
in clinical settings. The review emphasizes the necessity for further
research in standardization and validation of AI models across diverse
populations. This is crucial to ensure that the benefits of Al-driven
CACS detection are realized equitably and effectively in various clinical
contexts. Overall, the results of the paper underscore the transformative
potential of AI in enhancing CACS and expanding its application in
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preventive cardiology, while also addressing the challenges that must be
overcome for successful integration into clinical practice [79].

Deep learning models analyzing retinal images can predict
cardiovascular risk by detecting vascular changes linked to CVDs.
These models, using CNNs, provide a non-invasive method for
risk assessment, offering insights into the underlying pathological
mechanisms of CVD progression [80]. The study highlights the
ability of the proposed models to detect subtle vascular changes and
abnormalities that are linked to cardiovascular risk factors. This
capability is crucial for early intervention and prevention strategies in
CVDs. The framework developed in this research aims to streamline
the process of cardiovascular risk assessment. By utilizing retinal
imaging, the study provides a more accessible method for evaluating
cardiovascular health, which could lead to improved patient outcomes.
The research not only focuses on risk prediction but also offers insights
into the underlying pathological mechanisms that contribute to the
progression of CVDs. This understanding can enhance personalized
healthcare approaches and treatment plans. The paper emphasizes the
importance of rigorous validation and performance assessments of the
deep learning models. These evaluations are essential to ensure the
reliability and accuracy of the predictive models developed for retinal
image analysis. In summary, the results of this study indicate that deep
learning-based retinal image analysis holds significant promise for
improving cardiovascular risk prediction and enhancing personalized
healthcare strategies. The findings underscore the potential of
integrating advanced technology into routine clinical practice for better
health outcomes [80].

A study by Vaishali et al. [81] presents significant findings regarding
the effectiveness of an Al-powered prediction model for assessing the
risk of CVDs. The Al model achieved an impressive accuracy rate of
92%. This indicates that the model correctly identified high-risk patients
in a large majority of cases, showcasing its reliability in risk assessment.
The model demonstrated an extraordinary AUC of 0.95. This score
reflects the model’s ability to distinguish between patients who are at
risk of CVDs and those who are not, indicating a high level of predictive
power. The Al algorithm outperformed traditional risk assessment
tools, such as the Framingham risk score. This suggests that the AI
model can identify patients at high risk more effectively than existing
methods, which is crucial for timely intervention. The model was
rigorously validated on a variety of datasets that included demographic,
clinical, and lifestyle information. This diverse validation enhances
the generalizability of the model’s findings, making it applicable to
different populations. The results indicate that the integration of Al in
cardiovascular health care could lead to more personalized prevention
strategies and improved patient outcomes. This transformation could
also encourage funding for programs focused on early intervention and
tailored treatment plans. In summary, the study highlights the potential
of Al in revolutionizing CVDs risk assessment through high accuracy,
superior performance compared to traditional methods, and the ability
to provide personalized care. These results underscore the importance
of leveraging advanced technologies in healthcare to enhance patient
outcomes [81].

Challenges in Integrating AI into Clinical Workflows

Integrating Al into clinical workflows for CVDs presents numerous
challenges, despite its potential to revolutionize diagnosis, treatment,
and management. These challenges span technical, ethical, and
practical domains, impacting the seamless adoption of AI technologies
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in healthcare settings. The integration of Al into clinical workflows
requires addressing issues such as data quality, algorithm transparency,
and the need for interdisciplinary collaboration. Below are the key
challenges identified in the integration of Al into clinical workflows for
CVDs.

Data quality and interoperability

. Al systems rely heavily on high-quality data from diverse
sources such as electronic health records, imaging studies, and wearable
devices. However, data quality and interoperability remain significant
challenges, as inconsistent data formats and incomplete datasets can
hinder AI performance and integration into clinical workflows [82, 83].

. The integration of multimodal AI systems, which utilize
various data types, is still limited due to the complexity of managing
and harmonizing these diverse data sources [84].

Ethical and privacy concerns

. Ethical issues, including patient privacy and data security, are
paramount when integrating Al into healthcare. The potential for data
breaches and misuse of sensitive health information poses significant
risks that must be addressed to maintain patient trust and comply with
regulatory standards [85].

. Algorithm bias and the lack of transparency in AI decision-
making processes can lead to inequitable healthcare outcomes,
necessitating the development of explainable AI models that clinicians
and patients can trust [83, 85].

Technical and infrastructure challenges

. Implementing  Al-driven solutions requires robust
infrastructure and technological support, which may not be readily
available in all healthcare settings. This includes the need for advanced
computing resources and integration capabilities to support Al
applications [86].

. The complexity of AI models, particularly deep learning
algorithms, can make them difficult to interpret and validate, posing
challenges for their acceptance and use in clinical practice [87, 88].

Regulatory and validation barriers

. Regulatory hurdles, including the need for rigorous validation
and approval processes, can delay the deployment of AI technologies
in clinical settings. Ensuring that ATl models meet safety and efficacy
standards is crucial for their integration into healthcare systems [82,
83].

. The lack of prospective human validation studies limits the
evidence base for Als effectiveness compared to traditional practices,
which is necessary for gaining clinician and patient confidence [88].

Training and adoption by healthcare professionals

. The successful integration of Al into clinical workflows
requires healthcare professionals to be adequately trained in using these
technologies. The learning curve associated with new Al tools can be a
barrier to their widespread adoption [85].

. Interdisciplinary collaboration among clinicians, researchers,
and policymakers is essential to overcome these challenges and facilitate
the effective use of Al in cardiovascular care [82].

While AI holds great promises for transforming cardiovascular
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healthcare, these challenges highlight the need for careful consideration
and strategic planning in its integration. Addressing these issues
requires a concerted effort from all stakeholders involved in healthcare
delivery. Additionally, exploring alternative perspectives, such as the
potential for Al to empower patients directly through self-monitoring
and diagnosis, could offer new avenues for integrating Al into healthcare
systems. This approach could alleviate some of the burdens on clinical
workflows and enhance patient engagement in their own care [87].

Conclusions

The review comprehensively highlights the advancements and
integration of multimodality imaging and AI in CVDs diagnosis and
management. Multimodality imaging, encompassing ECG, CT, MRI,
and PET, has revolutionized cardiovascular diagnostics by providing
a holistic view of cardiac structure and function. The combination
of these techniques enables early disease detection, precise risk
stratification, and improved therapeutic decision-making. Furthermore,
HI approaches, such as PET/CT and SPECT/CT, enhance diagnostic
accuracy by merging anatomical and functional data, leading to better
patient outcomes. Personalized medicine has also benefited significantly
from multimodal imaging, allowing for tailored interventions based
on patient-specific risk profiles and disease characteristics. However,
challenges such as high costs, limited accessibility, and the need for
specialized expertise continue to hinder the widespread adoption of
these advanced imaging modalities.

The incorporation of Al into cardiovascular imaging has further
optimized diagnostic precision, risk assessment, and workflow
efficiency. Al-driven image analysis, deep learning algorithms, and
predictive models have shown great potential in improving diagnostic
accuracy and automating complex processes, reducing human error,
and enhancing clinical decision-making. Additionally, Al-based
risk prediction models utilizing imaging data have demonstrated
superior performance in forecasting adverse cardiovascular events,
ultimately aiding in preventive strategies. Despite these advantages,
the integration of Al into clinical practice presents hurdles, including
data standardization, regulatory constraints, ethical considerations,
and the need for adequate clinician training. Addressing these
challenges through ongoing research, technological advancements,
and interdisciplinary collaboration will be crucial for harnessing
the full potential of Al and multimodality imaging in transforming
cardiovascular care.
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