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Abstract
Cardiovascular disease (CAD) is among the most prevalent 
diseases around the world; nevertheless, its diagnosis requires 
highly qualified medical staff (e.g., cardiologists) because of 
the many variables involved in the process. Due to diagnostic 
complexity and the limited number of available qualified staff, the 
development of smart systems that could automate the diagnostic 
process is paramount. This paper investigates two systems in order 
to achieve this goal. The first system proposes the application of a 
data fusion with Kalman filtering in diagnosing CAD as well as in the 
prediction of the need to conduct a Coronary Artery Bypass Graft 
(CABG) in patients identified as having CAD. The second system, 
which is based on a combination of Particle Swarm Optimization 
(PSO) and a Gravitational Search Algorithm (GSA), is also 
proposed. Patient data was gathered from King Abdullah Medical 
City in Saudi Arabia, and a statistical analysis was conducted to 
explore the relationship between an array of variables and CAD. 
After identifying pertinent variables for diagnosis, some learning 
algorithms (e.g., Kalman Filtering, Particle Swarm Optimization 
and Gravitational Search Algorithm) were applied to the collected 
data sets to train the system for predicting the diseased condition. 
The main aim of this paper is to identify the underlying functional 
relationship between the medical patient records and the medical 
diagnosis in the datasets in order to predict the presence or 
absence of the disease for new patients. This work takes a novel 
approach by using different neural networks training algorithms, 
e.g., Quasi Newton and Scaled Conjugate Gradient (SCG) with
several activation functions on an extended Kalman filter.
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artificial intelligence using patient information and the manifestation 
of their symptoms.

Coronary Artery Disease (CAD) is a complex condition of artery 
blockage with high mortality figures [1]. The prevalence of Coronary 
Artery Disease (CAD) is increasing across the globe with high costs 
for governments and other healthcare stakeholders. In addition to 
financial pressures, CAD frequently results in mortality and is one of 
the world’s most prevalent causes of death.

A host of factors are used in the diagnosis of CAD, including 
patient blood pressure, cholesterol level, sugar levels, high BMI 
(overweight/obese), physical inactivity, unhealthy eating and smoking 
[2]. Other factors, such as age, gender, and family history of heart 
disease, are also likely risk factors for CAD [3]. With so many factors 
involved, detection is challenging because it requires identifying and 
interpreting the symptoms, risk factors and the patient’s medical 
history. This study was based on real patients in the Saudi Arabia 
population - in King Abdullah Medical City. Variables are known to 
have a relationship with CAD were considered and data collected. 

When a patient shows symptoms of heart disease, several tests 
must be immediately done by a doctor (most often an experienced 
cardiologist) to diagnose for coronary artery disease and prescribe 
the appropriate treatment regime [4]. This process is generally highly 
laborious and resource intensive, which makes the diagnosis and 
treatment very expensive. For this reason, amplifying new smart 
systems, which facilitate this process, is an urgent priority.

This research investigates the application of a Kalman Filtering 
(KF) for diagnosing coronary artery disease using two training 
algorithms for the prediction of the need to conduct a Coronary Artery 
Bypass Graft (CABG) in patients identified as having CAD. A second 
method used is training Radial Basis Function Networks by using a 
hybrid of Particle Swarm Optimization (PSO) and a Gravitational 
Search Algorithm (GSA) to solve the CAD prediction problems. 
Here, the GSA and PSO algorithms are employed as new training 
methods for a Radial Basis Function Network in order to investigate 
the efficiency of these algorithms. The derivation of the Kalman filter 
is involved in the data fusion algorithm, which simplifies the recursive 
calculation of the CAD status and the Coronary Artery Bypass Graft 
(CABG) requirement (i.e., the two factors of interest). This process 
uses a combination of knowledge/observations/measurements from 
patients, predictions from models and considers the inherent noise in 
the observations/measurements. Non-linear measurements were also 
involved in the prediction process; as a result, an extended variant 
of the KF (Extended Kalman Filter – EKF) was also applied in the 
research. The strength of the EKF is its ability to implement non-linear 
models [5], making it an ideal candidate for neural network training. 

Most applications of EKF training for neural networks have been 
for time-series predictions [6,7]. Time-series constraints on the data 
can be eliminated by using a Radial Basis Function (RBF) neural 
network architecture designed for classification. Our approach shows 
the use of EKF with various training algorithms used to train Radial 
Basis Function Neural Networks for CAD prediction. 

Studies show that Coronary Artery Disease (CAD) is increasing 
across the globe, requiring excessive resources to be used by healthcare 

Introduction
Modern lifestyle habits have significantly increased incidents of 

cardiovascular disease. Qualified staff available for disease diagnosis 
in this medical area remains limited and, therefore, are under 
increased pressure. Fortunately, the diagnosis of complex diseases has 
become much easier due to progress in computing technologies and 

DOI: 10.4172/lpma.1000235



Citation: Alsalamah M, Amin S, Palade V (2016) Prediction of Coronary Artery Disease Using a Combination of Methods for Training Radial Basis Function 
Networks. Prensa Med Argent 102:6

• Page 2 of 14 •

doi:  

stakeholders in trying to manage the disease [1,8-17]. This research 
could help develop for more efficient management strategies for the 
disease.

The paper is structured as follows. The literature review describes 
the previous work done in the detection of CAD. The use of Kalman 
Filtering for this is presented in Section 2, followed by a discussion of 
the methodology and the principles of this novel approach of using 
the Extended Kalman filtering, Particle Swarm Optimization and 
Gravitational Search Algorithm (PSOGSA) for radial basis functions 
training. The next section presents the procedure for testing and 
verification of the patient dataset. Section 4 presents the results and 
the analysis of the tests conducted using several combinations of 
different training algorithms. The final section is a summary of the 
work and provides some recommendations for future work.

Background
The correct diagnosis of Coronary Artery Disease (CAD) depends, 

along with other factors, on a patient’s blood pressure, cholesterol and 
sugar levels. Being overweight, physical inactivity, unhealthy eating 
and smoking tobacco, are all risk factors for CAD. A family history of 
heart disease also increases the risk for developing CAD. If a patient 
is at high risk for heart disease or already has symptoms, a doctor can 
use several tests to diagnose CAD. However, this process is always 
complicated, expensive and requires expertise.

CAD is caused by the build-up of plaque in the walls of the arteries 
that supply blood to the heart (coronary arteries) and other areas of 
the thoracic region of the body. This plaque consists of cholesterol and 
other substances that are deposited in the arterial wall [2]. The build-
up of plaque inside the arteries results in stenosis or a narrowing of 
the arteries over time, which could ultimately cause partial or total 
blockage of blood flow – a condition known as atherosclerosis. 
Atherosclerosis makes it harder for blood to flow and, when the heart 
muscle receives less than enough blood to function, there is resultant 
chest pain or discomfort around the thoracic region called Angina 
Pectoris – a common symptom of CAD. Over time, CAD weakens the 
heart muscle and can lead to heart failure; an acute condition where 
the heart is unable to pump blood the way that it should. An initial 
sign of this is irregular heartbeat/heart rhythm called arrhythmia 
[2,3].

To improve diagnostic efficiency, automatic Computer-Assisted 
Detection tools have been applied to the diagnosis process in recent 
years. Linear and logistic regression models are frequently used [8-12]. 
Other commonly used predictive models are the Linear Discriminant 
Analysis, K-nearest Neighbour Classifier, Artificial Neural Network 
and the Support Vector Machine [13-16]. These models have, to 
some extent, been shown to have good predictive value. For example, 
Mandal showed that the prediction accuracy of training and test sets 
of Linear Discriminant Analysis could be as high as 90.6% and 72.7%, 
respectively. While Heydari showed that Artificial Neural Networks 
can produce accuracy as high as 81.2% on a test set. In spite of these 
reasonable results, there are limitations in most learning algorithms. 
For example, the Linear Regression and the Linear Discriminant 
Analysis are both linear techniques that cannot be extended to non-
linear modalities (variables) which are requisite for a proper diagnosis 
of CAD. As a way of circumventing this issue, researchers started to 
apply more complex models - such as the combination of a Support 
Vector Machine with a Radial Basis Function (RBF) Kernel, Support 
Vector Machines optimized by particle swarm optimization or other 
forms of integration of two individual approaches to generate better 

non-linear techniques [16,17-19]. These combinations improved the 
prediction accuracy on the training and the test sets to as high as 
96.9% [13]. 

Despite this improvement in the performance of the newer and 
more complex models, the cross-validated prediction accuracy of 
these models still needs to be improved, with [16] reporting a cross-
validated prediction accuracy using a Support Vector Machine 
and RBF hybrid non-linear technique that could only get as high 
as 92.67%. There is room for improvement. One important way of 
improving the process, which is yet to be well exploited, is to enhance 
the quality of the data sets used for training.

Measures of an algorithms’ performance, such as validation 
error, are affected by variations in the data. A potential candidate for 
improving data quality is the Matrix Completion, a process that adds 
to the number of entries to the data that contains some unknown/
missing values. Research indicates the Matrix Completion could 
greatly enhance the accuracy of prediction [20-22]. 

Furthermore, application of the hybrid Extended Kalman Filter 
(EKF) in the diagnosis of CAD shows potential for enhancing 
accuracy. The Kalman Filter (KF) is a well-established estimation 
theory that has been in existence since the 1960s. Though initially 
designed to provide recursive solutions through linear optimal 
filtering for estimating desired parameters, the extended version of 
the filter (i.e., Extended Kalman Filter – EKF) has the capability to 
handle non-linear systems/conditions [23]. This learning algorithm 
has been used in diverse research realms, and has shown excellent 
results in terms of prediction accuracy [24,25]. Nonetheless, the EKF’s 
alluring capabilities are yet to be explored in the area of Coronary 
Artery Disease prediction. This is most likely due to the lack of 
awareness about its existence, as the majority of researchers in this 
realm of research and beyond are more familiar with the KF, which 
can only provide a recursive solution through linear means [26,27].

Methodology
RBF Neural Network models are a suitable method for classification 

problems, such as in the detection of diseases (e.g., occurrence of 
CAD). In order to address classification problems, several steps are 
required. This section provides a brief on the methodology steps we 
followed, as shown in Figure 1.

Statistical analysis
Before being applied to the RBF network, the data set has to be pre-

processed to identify a relationship between existence/non-existence 
of CAD based on many variables. The current study was based on a 
sample of the Saudi Arabian population, in King Abdullah Medical 
City, with the objective to identify the relationship between CAD and 
other variables; namely demographic variables such as age, gender, 
occupation, physical variables (height, weight), smoking habits and 
medical history among others.

Data analysis: There were 60 variables and 688 observations in the 
data set collected. This was initially analyzed by means of frequency 
distributions and graphs in order to understand the general nature 
of the data and to determine the optimal statistical model to test the 
hypotheses. Logistic regression was the main analysis used to test the 
hypotheses. As CAD would be the target variable (dependent variable) 
of the logistic regression model, the observations with missing CAD 
status data were removed from further analysis. CAD was measured 
on a dichotomous scale, with the two categories being mutually 
exclusive - satisfying the prior assumptions of logistic regression. 
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There were 59 independent variables in the data. The frequency 
distributions of each of them were studied to discover if further 
modifications would be required to fit the model, and to eliminate data 
entry errors. Mismatched entries were found, and were considered as 
“no information” and tagged as 0 in required cases. The distribution 
was made of independent categorical variables, after cleaning up the 
data. Among the 687 observations, 402 came from males and 117 
had a history of stroke. 124 people were smokers; whereas, 197 were 
previous smokers. 

There were a few continuous variables in the data. Their range, 
central tendency and dispersion were studied to ensure proper 
generation of those variables. These variables were be used directly 
with the logistic model, as they are sufficient for the elementary 
assumptions of a logistic regression model. However, the model 
results would only give directional overview – such as “if Blood Urea 
Nitrogen (BUN) increases, the chances of CAD also increases”. On the 
other hand, if they could be transformed into categorical variables, the 
model results would provide strategic overview, for example: “People 
having BUN within 60-80 have more chances to have CAD”.

Considering that most of these continuous variables are very 
important in the medical context; they were transformed into “to be 
applicable, no medical variable can have a value 0.” Hence, all 0 values 
were considered as “No Information”. Following is a brief description 
of how these variables were transformed into categorical variables, 
after the classification of the distribution of medical variables had 
been made (Table 1).

Statistical methodology: The data was prepared for the model 
and the Information Value (IV) of each variable was calculated, 
which helped to eliminate variables from the model. IV is a measure 
equivalent to correlation analysis. But, unlike correlation, it works for 
only categorical variables. IV indicates the predictive power of the 
variable.

The second test required for variable elimination is checking 
multi co-linearity using the Variance Inflation Factor (VIF). If the 

value of the VIF for any variable is higher than 3, the variable is likely 
to be correlated with any of the other variables, and will have adverse 
impact on the model results. The original dataset was used for this 
operation to extract the affected attributes (Tables 2 and 3).

The variables highlighted (in bold font) will not be used in the 
final model. The Compute BMI and the BMI group variables are 
correlated (r=0.9) and removing any one of them will help. Similarly, 
Systolic HTN and Diastolic HTN are correlated (R =0.961). Hence, we 
can keep any one of them (Table 4).

The next step was to build the logistic regression model, with 
CAD as the target variable.

The overall model concordance us 84.7%, which indicates that the 
model predicted 84.7% of observations correctly and is statistically 
good. Any concordance value >60% is considered good.

The pseudo R-square value of the model is 0.559 which is 
moderate. The higher the pseudo R-sq is the better the model, with 
R-square ranging from 0 to 1 (Table 5).

B is the coefficient of the variable. SE is the standard error of the 
variable. Wald is the chi-sq value that determines the significance of 
the variable - a higher chi-sq means a more significant variable. The 
df is the degrees of freedom of that variable. Sig. is the p-value - the 
lower the p- value, the higher the significance. EXP (B) is the impact 
of the variable on the target. The variables that have p-values < 0.1 
are statistically significant at the 10% level of significance. At the end 
of the analysis and under the consultant super vision by Dr Osma 
from King Abdullah Medical City, 21 effected attributes have been 
highlighted and assigned in the diagnosis of CAD (Table 6).

Summary of analysis results

The variables that significantly impacted CAD diagnosis are 
(Table 7):

•	 Amlodipine: those who have taken Amlodipine have a higher 
risk of developing CAD

•	 Enoxaparinclexame: those who have taken Enoxaparinclexame 
have a risk of developing CAD.

•	 HF: those who have reported ‘yes’ to HF have a higher risk of 
developing CAD.

•	 Rosuvastatin: those who have taken Rosuvastatin have a 
higher risk of developing CAD.

•	 Smoking: smokers who have taken Rosuvastatin have a higher 
risk of developing CAD.

•	 Stroke: people who have a history of stroke have a higher risk 
of developing CAD.

•	 Age: people between 26-40 years are in the low-risk zone of 
CAD

•	 Weight: weight overall is a significant factor associated with 
CAD, but no particular age-group has been identified as 
more/less risk prone.

•	 BMI: people who have perfect weight are at much lesser risk 
than underweight or overweight people.

•	 HDL: unlike overall cholesterol level and bad cholesterol LDL, 
good cholesterol HDL is a significant factor of CAD. People 
having lower HDL, <59 mg have a higher risk of developing 
CAD.

•	 FBS: whoever has above normal FBS are in a high risk zone of 

Figure 1: Methodology overview.
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Variable Mean Median Min Max Standard deviation
BGC 79.87 0 0 999 122.54
BUN 10.23 0 0 999 39.62
CH 133.60 135 0 340 60.60
ComputeBMI 28.28 27.72 0 114.06 9.93
FBS 37.14 0 0 430 67.35
HB 8.41 11.5 0 26.4 6.57
HDL 35.61 35 0 346 21.35
Hight 159.74 163 0 999 54.94
LDL 87.16 89 0 552 47.58
PPBS 38.84 0 0 1174 97.10
RBC 3.22 4.3 0 85 4.51
TG 121.11 112 0 722 78.31
WBC 5.10 5.6 0 96.5 5.59
Weight 76.05 74 0 999 43.03
Age 51.70 53 0 999 40.08
diastolicHTN 53.09 76 0 114 38.80
systoilcHTN 86.69 120 0 200 63.34
timeofexcercise 14.23 0 0 600 42.56

Table 1: Distribution of independent variables (Continuous).

Information Value Predictive Power
< 0.02 useless for prediction
0.02 to 0.1 Weak predictor
0.1 to 0.3 Medium predictor
0.3 to 0.5 Strong predictor
 >0.5 Suspicious or too good to be true

Note: The variables with low IV will not be used in the model

Table 2: IV Values.

developing CAD.
•	 PPBS: people having a slightly higher measurement on PPBS 

are at higher risk of developing CAD than those who have 
very high or normal measurements

•	 BUN: BUN overall is a cause of CAD, but no significant 
measurement group is identified as being at high risk.

Data set classification

There were three datasets used in this research. However, the 
main application was the CAD dataset, collected from King Abdullah 
Medical City. Below, a brief description for each dataset is provided:

•	 The King Abdullah Medical City hospital data is obtained 
from the history of different patients, which came from the 
evaluation of CAD related diseases. 

•	 In order to evaluate the system with different data, we used 
two other kinds of data set, which are:

•	 Cancer dataset: from The Neural Network Toolbox in 
MATLAB. It has 8 input attributes and 2 outputs and 1000 
records in the dataset.

•	 Simple class dataset: from the Neural Network Toolbox in 
MATLAB. It has 2 inputs attributes and 4 outputs and 1000 
records.

Pre-processing

Data requires pre-processing before being fed to the RBF network 
for CAD detection. Two steps were taken: digitization and missing 
data completion.

Digitization: Most of the data were non-numerical. Furthermore, 
the data contained values with large statistical anomalies. Also, it was 

necessary to convert the data with non-numerical format into proper 
numbers, so it could be used for the training and testing of the neural 
network.

The following steps were taken:
•	 Encoding all the input data;
•	 Logical values: (Yes) or (No) were encoded to 1 or 0 

respectively;
•	 Values with multiple possibilities were encoded by scaled 

numbers in the range of 1 to 9;
•	 Values which were already numbers remained so,
•	 Encoding output data so as to enlist all possible outputs. These 

were then converted to multiple single digit binary outputs, as 
shown in block 1 in Figure 2.

Matrix completion for missing data: Due to several entry 
deficiencies in recording, interview or manual entry, patient data can 
contain some anomalies - in certain cases missing several or one of 
the major contributing fields (e.g., high level of missing data, which 
is inherent in the sets of data often used in CAD diagnosis/prediction 
as these data sets come from multiple sources, e.g., oral interviews, 
doctors’ examinations and technical measurements with different 
instruments).

Consequently, the estimation process can be disturbed. To avoid 
this, it would seem the patient’s information should be discarded. 
However, patient information is generally confidential and cannot be 
discarded by the source. In this case, the use of Matrix Completion 
technique seems very useful to improve prediction efficiency. 
Although this has not provided a high percentage of accuracy, it has 
helped to use patient information with less missing field numbers. 
Thus, higher confidence in the Matrix Completion results was 
considered in the study. 

In this work, the Exact Matrix Completion via Convex 
Optimization method was selected to improve the data quality and 
availability, based on its ability to evaluate the sparse matrices using 
the convex optimization problem.

Training the RBF neural network

RBF networks, because of their classification capability, are a good 
candidate for training with non-linear data. An RBF network consists 
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Coefficientsa

Model
Collinearity Statistics
Tolerance VIF

Smoking .563 1.777
age .761 1.313
gender .619 1.614
Weight .415 2.410
ComputeBMI .180 5.545
BMIGroup .166 6.026
Hight .523 1.914
typeofsmoking .476 2.102
dursmoking .763 1.310
Squitting .479 2.087
NOciggateD .587 1.704
Exercise .607 1.648
timeofexcercise .656 1.524
000000000000 .500 2.000
systoilcHTN .051 19.633
diastolicHTN .054 18.460
DM .449 2.229
BGC .542 1.844
PDM .523 1.911
PCVD .553 1.808
ObeseR .759 1.318
Anemia .757 1.321
Stroke .733 1.365
HF .917 1.090
Amlodipine .911 1.097
Enoxaparinclexame .700 1.429
Asprin .353 2.834
Atrovastatin .586 1.706
Cerivastatin .476 2.100
Fluvastatin .014 72.731
Pitavastatin .871 1.147
Pravastatin .008 126.381
Rosuvastatin .049 20.235
Clopidogreal .175 5.699
Pantoprazole .190 5.251
Nitroglycerin .037 26.764
perindoprilarginine .214 4.675
Angiography .238 4.210
LDL .529 1.890
CH .403 2.482
HDL .704 1.421
TG .733 1.365
FBS .731 1.368
PPBS .712 1.405
WBC .314 3.181
HB .287 3.490
RBC .723 1.383
BUN .932 1.073
Albumin .939 1.065

a. Dependent Variable: CAD

Table 3: VIF of the variables.

Observed
Predicted
CAD

Percentage Correct
0 1

CAD
0 449 39 92.0
1 66 133 66.8

Overall Percentage 84.7

Table 4: Concordance values.

Model Summary

Step -2 Log likelihood Cox & Snell R 
Square

Nagelkerke R 
Square

1 485.719* .391 .559

Table 5: Model Summary.

Note: The pseudo R-square value that determines the goodness of fit of the 
logistic model

Hosmer and Lemeshow Test
Step Chi-square df Sig.
1 4.348 8 .824

Note: This is another test of goodness of fit. The bigger the value of Sig. 
(Significance), the better the model is. 0< significance <1.

Table 6: Goodness of fit – Hosmer-Lemeshow. 

Other Diagnosis Count
MI 140
unstable angina 27
essential primary hypertension 9
atrial fibrillation 10
Cardiomyopathy 33
Angina 22
angina pectoris 13
Arrhythmia 40
Chest pain 43
dilated cardiomyopathy 65

Table 7: Top 10 other diagnosis outcomes when CAD is present.

of three layers: namely the input layer, the hidden layer and the output 
layer. The input layer broadcasts the coordinates of the input vector to 
each of the units in the hidden layer. Each unit in the hidden layer then 
produces an activation based on the associated radial basis function. 
Finally, each unit in the output layer computes a linear combination 
of the activations of the hidden units. How a RBF network reacts to 

a given input stimulus is completely determined by the activation 
functions associated with the hidden units and the weights associated 
with the links between the hidden layer and the output layer. In the 
RBF networks constructed with the proposed learning algorithm, 
each activation function associated with the hidden unit was built 
either using TPS or R4RlogR as an activation function. 

In this work, two methods were used for training. The first 
method used the Extended Kalman Filter for the learning procedure, 
and it used different training algorithms, such as Quasi Newton and 
Scaled Conjugate Gradient (SCG). The second prediction method is 
PSOGSA - the Gravitational Search Algorithm (GSA) - which is a 
novel heuristic optimization method based on the law of gravity and 
mass interactions.

Method 1: Extended kalman filtering

The Kalman Filter gain is a time-varying gain matrix. The matrices 
used were:

•	 Auto-covariance matrix (for lag zero) of the estimation error 
of the corrected estimate:

•	 Auto-covariance matrix (for lag zero) of the estimation error 
of the predicted estimate:

•	 The transition matrix A of a linearized model of the original 
nonlinear model was calculated with the most recent state 
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Figure 2: Flow of the RBF network buildup to obtain the CAD diagnosis result.

estimate, which was assumed to be the corrected estimate xc 
(k):

•	 Given the continuous-time nonlinear process model. 
Linearize it at the operating point to obtain A.

•	 Then calculate A = A discrete as the discretized version of 
A continuous. Forward method of discretization in manual 
calculations can be used; however in this case MATLAB is 
used to discretize this function.

EKF Implementation for current work: The first step was the 
derivation of the equations on which EKF neural networks training 
algorithm are based. A neural networks (NN) can be described as a 
non-linear discretized system wK+1.

1k k kw w ω+ = +

Where wK is the weight vector? And wK+1 computation: for 
k=1,2…, compute state estimate prpogation 

The second equation, known as the observation or measurement 
equation, represents the network’s desired response vector yk as a 
nonlinear function

1( , , )k k k k k ky h w u v v−= +

Where hk is the derivative matrix, wK is the weight vector; uk is 
an input training pattern and vk-1 is the recurrent node activations vk 

from the previous time step for GRBFs.

The input vector uk, the weight parameter vector wk, and, for 
recurrent networks, the recurrent node activations vk; this equation 
was augmented by random measurement noise nk.

The noise (measured) nk is given as:

,[ ]T
k l k l kE v v Rδ=

Where Rk is the covariance noise matrix

Similarly the process noise vk is given as:

,[ ]T
k l k l kE Qω ω δ=

Where Qk is the covariance matrix of the process noise

The training problem using Kalman filter theory can now be 
described as finding the minimum mean-squared error estimate 
of the state ‘w’ using all observed data so far. We assumed network 
architecture with M weights and no output nodes and cost function 
components. 

The EKF solution to the training problem is given by the following 
recursion:

1[ ]T
k k k k kA R H P H −= +
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k k k kK P H A=

1k k kW W K ε+ = +

k kky yε = +

The vector wk represents the estimate of the state (i.e., weights) of 
the system at update step k. This estimate is a function of the Kalman 
gain matrix Kk and the error vector.

k kky yε = +

Where Yk is the target vector yk and is the network’s output vector 
for the kth presentation of a training pattern.

The Kalman gain matrix is a function of the approximate error 
covariance matrix Pk, a matrix of derivatives of the network’s outputs 
with respect to all trainable weight parameters Hk, and a global scaling 
matrix Ak. The matrix Hk may be computed via static backpropagation 
or backpropagation through time for feedforward and recurrent 
networks, respectively.

The scaling matrix Ak is a function of the measurement noise 
covariance matrix Rx, as well as of the matrices Hk and Pk. Finally, 
the approximate error covariance matrix Pk evolves recursively with 
the weight vector estimate; this matrix encodes second derivative 
information about the training problem, and is augmented by the 
covariance matrix of the process noise Qk. 

This algorithm attempts to find weight values that minimize the 
sum of squared error. 

T
k k

k

ε ε∑

Note that the algorithm requires that the measurement and 
process noise covariance matrices, Rk and Qk be specified for all 
training instances. Similarly, the approximate error covariance matrix 
Pk must be initialized at the beginning of training.

Generalized Extend Kalman Filter (GEKF) training was carried 
out in a sequential fashion as shown in the signal flow diagram below.

We describe one training step as follows:
•	 An	 input	 training	 pattern	  was propagated through the 

network to produce an output vectory yk. Note that the 
forward propagation is a function of the recurrent node 
activations vk from the previous time step for GRBFs. The 
error vector jk is computed in this step as well.

•	 The	derivative	matrix	Hk was obtained by back propagation. 
In this case, there was a separate backpropagation for each 
component of the output vector yk and the backpropagation 
phase involved a time history of recurrent node activations 
for GRBFs.

•	 The	Kalman	gain	matrix	was	computed	as	a	function	of	the	
derivative matrix Hk, the approximate error covariance matrix 
Pk, and the measurement covariance noise matrix Rk. Note 
that this step included the computation of the global scaling 
matrix Ak.

•	 The	 network	 weight	 vector	 was	 updated	 using	 the	 Kalman	
gain matrix Kk, the error vector Jk, and the current values of 
the weight vector Wk.

•	 The	approximate	error	covariance	matrix	was	updated	using	
the Kalman gain matrix Kk, the derivative matrix Hk, and the 
current values of the approximate error covariance matrix Pk. 
Although not shown, this step also included the augmentation 
of the error covariance matrix by the covariance matrix of the 
process noise Qk, the procedures shown in block 2, 3 and 4 in 
Figure 2.

Calculation of kalman filter gain: The Kalman filter gain Kk was 
calculated as follows and is shown in block 2, 3 and 4 in Figure 2: 

•					The	initial	step,	and	the	operations	here	were	executed	only	
once. The initial value was set to some guessed value (matrix), 
e.g., to the identity matrix (of proper dimension)

•	 Calculation	of	the	Kalman	Gain
•	 Calculation	 of	 auto-covariance	 of	 corrected	 state	 estimate	

error
•	 Auto-covariance	of	corrected	state	estimate	error
•	 Calculation	 of	 auto-covariance	 of	 the	 next	 time	 step	 of	

predicted state estimate error
•	 Auto-covariance	of	predicted	state	estimate	error.

Quasi-newton: The Quasi-Newton method is an extension of the 
Newton optimization algorithm. Unlike the Newton method, which 
calculates the Hessen of the function (which is complex, resource heavy 
and approximation is used between the steps), Quasi-Newton quickly 
optimizes and is simpler to implement, calculating the minima of the 
function iteratively. The training of the network is based on different 
options; these options are adjustable once the network evolves to its 
optimized set of weights and centres. Quasi-newton not only uses the 
function but its gradient to find the minima of the function.

One of the optimization goals is to achieve the required 
performance (in our case, the MSE) then the training shall stop. 
However, in certain cases, because of the large amount of variance 
in the input, achieving this goal is not possible; therefore, there shall 
be a way to stop the algorithm at a reasonable time. The condition on 
which the training must be stopped is any one or all of the following:

•	 The	maximum	number	of	set	repetitions	is	reached.
•	 The	maximum	amount	of	time	is	exceeded.
•	 Performance	is	minimized	to	the	goal.
•	 The	performance	gradient	falls	below	minimum	gradient.
•	 Validation	performance	has	 increased	more	 than	maximum	

fail times since the last time it decreased (when using 
validation) and shown in block 3 in Figure 2. 

Scaled Conjugate Gradient (SCG): SCG is a supervised learning 
algorithm for feedforward neural networks, which is a member of the 
class of conjugate gradient methods. 

The SCG is one of the conjugate gradient methods; however it 
adapts the search direction and step size more carefully, determined by 
the second order approximation. The other three conjugate gradient 
algorithms require a line search for the every iteration, which is 
computationally expensive, since it requires that the network response 
to all training inputs be computed several times for each search. The 
SCG training algorithm was developed to avoid this time-consuming 
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line search, thus significantly reducing the number of computations 
performed in each iteration, although it may require more iterations 
to converge than the other conjugate gradient algorithms. The storage 
requirements for the SCG algorithm are about the same as those of 
CGF and shown in block 3 in Figure 2.

Procedure: The main theme of this classification solution is to 
optimize the network and then validate the results. This is mainly 
divided into three steps: i.e. train, test and validate.

The available data will be divided into training and testing data. 
This way several models trained on the training set will be available to 
be applied on the test set. The best result on the test set based on these 
several trained models is then considered as the optimal simulation. 
This procedure is also detailed in Figure 2.

Cross validation: The discussed above can introduce a bias towards 
a particular data set. Therefore, the data set can be portioned and 
swapped as testing and training sets to negate this bias and also to 
calculate an average based on these different partitions.

The data set in this system has been divided into three sections: 
training, testing and validation as following:

•	 Training	set	is	used	to	build	the	model.	This	contains	a	set	of	
data, the pre-classified target and predictor variables.

•	 Testing	set	is	used	to	evaluate	how	well	the	model	does	with	
data outside the training set. The test set contains the pre-
classified results data but they are not used when the test 
set data is run through the model till the end, when the pre-
classified data are compared against the model results. The 
model is adjusted to minimize the error on the training set.

•	 Validation	set	is	used	to	evaluate	the	adjusted	model	in	step	2,	
where again, the validation set data is run against the adjusted 
model and results compared to unseen pre-classified data. 

One of the optimization goal is to achieve the required 
performance (in our case is the MSE) then the training shall stop. 
However in certain cases because of the large amount of variance 
in the input this is not possible to achieve this goal, then there shall 
be a way to stop the algorithm at a reasonable time. Therefore, the 
conditions on which the training must stop can be one of those cases; 
the performance is minimized to the goal. Or Validation performance 
has increased more than maximum fail times since the last time it 
decreased (when using validation).

Bin classification: Bin classification is the method used to evaluate 
the correctness of the algorithm. Since this is a classification problem, 
hence the regression analysis is not too suitable for this work. The 
error percentage is calculated based on the expected results and the 
actual results. The expected results, as explained before, are obtained 
from the current calculations of the feedforward RBF network. 

The calculated values from the network have similar rows and 
columns as the actual output target data. The requirement for bin 
classification and error calculation is that there shall be a minimum of 
two columns of expected results.

Method 2: Particle Swarm Optimization Gravitational Search 
Algorithm (PSOGSA)

In Feed forward Neural Networks, the minimum error can be 
found by the best combination of connection weights and biases 
during the learning process. However, most of the time, the feed 
forward networks converge to the local minimum, and not to the 
global minimum, thus learning algorithms lead the feed forward 

networks towards local minima and not global minima. There have 
been several training algorithms used for FNNs. In addition, there have 
been several heuristic algorithms used to train FNNs, which include 
SA (Simulated Annealing), GA (Genetic Algorithms), and Particle 
swarm optimization (PSO), Magnetic Optimization Algorithms 
etc. The SA and GA attempt to achieve the global minimization, 
but their convergence rate is very slow. However Mirjalili suggested 
using a hybrid combination of a Particle Swarm Optimization and 
Gravitational Search Algorithm rather than the FNNs. The basic idea 
of PSOGSA is to combine the ability for obtaining the global best in 
PSO with the local search capability of GSA, potentially, a very good 
candidate for FNN training. Three different experiments were set to 
test and compare the PSOGSA with simple PSO and GSA algorithms 
with varying numbers of hidden nodes (3 to 7 in one case and then 
up to 30 for another experiment). These experiments included a 
parity check, iris detection and a function approximation problem. 
The outcome of the experiments clearly indicated that the MSE (mean 
square error) of PSOGSA is better than using PSO or GSA separately. 
This proved that PSOGSA can resolve the problem of local minima 
and also enhance the convergence speed. Thus, in this research the 
PSOGSA was used to train RBF Networks.

In PSOGSA, an initial population was generated and randomly 
initialized as in the case of all GAs. This was done to evaluate whether 
each agent could be considered as a best solution. After initialization, 
the gravitational force, gravitational constant, and resultant forces 
among agents were calculated using equations given respectively. 
After that, the accelerations of particles were defined, and in the 
each iteration, the best solution so far was updated. After calculating 
the accelerations and updating the best solution, the velocities of all 
agents were calculated. Finally, the positions of agents were updated. 
The process of updating velocities and positions was stopped when 
meeting an end criterion. The basic idea of PSOGSA is to combine 
the ability for social thinking (gbest) in PSO with the local search 
capability of GSA, as shown in Figures 3 and 4.

Implementation of PSOGSA

1) Initial Parameters for PSO to set up the classifier:
•	 Number	of	particles
•	 Maximum	number	of	iterations.
•	 Inertia	weight.
•	 Max	inertia	weight.
•	 Min	inertia	weight.

Figure 3: General steps of the gravitational search algorithm.
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•	 Velocity	vector.
•	 Position	vector.
•	 Convergence	vector.
2) Initialize gBestScore:

3) Calculate MSE:
•	 Calculate	value	using	RBFN.
•	 Update	Fitness	value.
•	 Update	gbest	and	pbest.
4) Update the w (weight) of PSO
5) Update velocity of particles
6) Update position of particles

Results and Analysis
Each data set was used for the first method, with Extended Kalman 

Filtering, and having three different combinations: by swapping 
the training, testing and validation sets. In this experiment, the two 
different training algorithms (Quasi-Newton & SCG) were used with 
the different combinations of the data sets to evaluate the performance 
of the training algorithms. The accuracy for the three datasets was 
good. The prediction probability of this combination resulted in an 
accuracy of about 92%, using cross validation for the CAD dataset 
and above 95% in the two other datasets using cross validation. The 
second method that used PSOGSA has provided above 83% accuracy 
with the cancer dataset and about 92% with the CAD dataset using 
cross validation with varying the number of hidden nodes.

Cancer data set

Figure 5 provides the results on the Cancer Data set tested on the 
similar combinations of training algorithms and activation functions. 
There are slight differences in accuracy by using different training and 
activation algorithms. This can be summarized as follows:

The dataset has been divided randomly into three sub-datasets, 
and each sub-dataset divided into training, testing and validation for 
100 iterations.

Table 8 shows the details of Figure 5, including training errors, 
testing errors, validation error and the best iteration in each training 
algorithm in the command window for each set:

The following observations were made:
•	 The	accuracy	of	the	combination	Quasi	New	and	R4R	for	the	

three sub datasets (cross validation) was: 97.4, 97.4 and 96.4. 

•	 The	accuracy	of	the	combination	Quasi	New	and	TPS	for	the	
three sub datasets (cross validation) was: 94.4, 99.4 and 98.4.

•	 The	accuracy	of	the	combination	SCG	and	R4R	for	the	three	
sub datasets (cross validation) was: 95.4, 93. 9 and 85.4.

•	 The	accuracy	of	the	combination	SCG	and	TPS	for	the	three	
sub datasets (cross validation) was: 96.9, 97.4 and 95.9.

•	 The	combination	of	Quasi-newton	and	TPS	produced	the	best	
and most consistent set of training and activation algorithms; 
even with a change in data sets, the validation error did not 
increase from 5.53%. 

•	 The	 best	 testing	 performance	 of	Data	 set	 2	 is	 likely	 due	 to	
fewer missing and erroneous data, hence keeping the test 
errors at a maximum of 4.00% for all the combinations. With a 
Quasi-Newton training algorithm, the testing error is limited 
to 1.00%.

•	 The	SCG	and	the	R4logR	combination	produced	the	highest	
number of iterations or processing time with the best result. 
The combination was computationally slow to converge; 
however, if we look at the validation results, this was second 
best out of the four combinations used.

•	 The	 training	 error	 is	 still	 relatively	 low	 for	 all	 of	 the	
combinations; however the Quasi-newton and R4logR 
combination provides the best in terms of training error.

* We can reference the differences between the validation errors 
from each dataset (CAD, Cancer and simple class to the nature of the 
data and the number of the input attributes.

Simple data set

Figure 6 provides the results of the Simple Data set taken from 
the MATLAB Neural network and tested on the similar combinations 
of Training algorithms and activation functions for reference to the 
hospital data set results. The difference is that this is more of a linear 

The following observations were made:
•	 The accuracy of the combination Quasi New and R4R for the 

three sub datasets (cross validation) was: 99.6, 97.2 and 98.2, 
sequentially

•	 The	accuracy	of	the	combination	Quasi	New	and	TPS	for	the	
three sub datasets (cross validation) was: 97.8, 98.2 and 98.4, 
sequentially. 

•	 The	accuracy	of	the	combination	SCG	and	R4R	for	the	three	
sub datasets (cross validation) was: 91.4, 98.8 and 99.4, 
sequentially. 

•	 	 The	 accuracy	 of	 the	 combination	 SCG	 and	 TPS	 for	 the	
three sub datasets (cross validation) was: 96, 98.8 and 98.8, 
sequentially. 

•	 The	combination	of	Quasi	New	and	R4R	produce	the	best	and	
most consistent set of training and activation algorithms, with 
a validation error 0.0%4.

•	 The	best	testing	performance	is	of	the	Data	set,	which	is	likely	
due to fewer missing and erroneous data; hence, keeping the 
test errors at only 2.09% for all the combinations.

•	 The	SCG	and	the	R4Rlog	combination	produced	the	highest	
number of iterations or processing time, with the best result. 
The combination was computationally slow to converge; 
however, if we look at the validation results this is second best 
out of the four combinations used.

•	 Overall	 the	combination	of	Quasi	New	and	R4R	performed	
the best and took less iteration to converge.

Figure 4: Steps of PSOGSA.
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Figure 5: Cancer Data Set with three Combinations of data sets and 4 different training and activation functions.

 
Figure 6: Simple Data Set with three Combinations of data and 4 different training and activation functions.
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With matrix completion

The detailed results of the four different combinations are given 
in Figure 7 and Table 9, including training errors, testing errors, 
validation error and the best iteration in each training algorithm for 
each of the three sets after Matrix completion.

The following observations were made:
•	 The accuracy of the combination Quasi New and R4R for the 

three sub datasets (cross validation) was: 93.0, 91.4 and 91.9, 
sequentially. 

•	 The	accuracy	of	the	combination	Quasi	New	and	TPS	for	the	
three sub datasets (cross validation) was: 93.0, 92.5 and 91.9, 
sequentially. 

•	 The	accuracy	of	the	combination	SCG	and	R4R	for	the	three	
sub datasets (cross validation) was: 91.9, 91.9 and 89.3, 
sequentially. 

•	 The	accuracy	of	the	combination	SCG	and	TPS	for	the	three	
sub datasets (cross validation) was: 93.0, 92.5 and 91.9, 
sequentially. 

•	 The	combination	of	SCG	and	TPS	produced	the	best	and	most	
consistent set of training and activation algorithms; even with 
change in the data sets, the validation error did not increase 
from 6.95%, except the second set, which produced a result of 
8.02%.

•	 The	best	testing	performance	is	of	the	Data	set	1;	the	possible	
reason is fewer missing and erroneous data, hence keeping the 
test errors at only 3.00% for all the combinations.

•	 The	SCG	and	the	R4Rlog	combination	produced	the	highest	
number of iterations or processing time, with the best result. 

This combination was a computationally slow to converge; 
however, if we look at the validation results, this is second best 
out of the four combinations used.

•	 The	 training	 error	 is	 still	 relatively	 high	 for	 all	 of	 the	
combinations; however the Quasi Newton and R4RlogR 
combination provides the best in terms of training error.

•	 The	highest	validation	error	reached	was	10.40%	as	compared	
to the non-matrix completed set; however, in general the 
results found improved by 0.4 to 0.5%, which is quite 
significant at the top end of predicting a correct result.

•	 Overall	the	combination	of	SCG	and	R4RlogR	performed	the	
best. The only downside is that it takes far more iterations to 
converge; however, this is an offline classification application, 
thus in terms of real-time performance this is not a 
consideration (Table 10).

PSOGSA

Run of experiment with changing number of hidden nodes, two 
datasets, Cancer data set and Saudi Arabia hospital data (CAD)

Data Set: Cancer_dataset

Inputs: 9x1000

Targets: 2x1000

Figure 8 shows the RBFN with PSOGSA algorithm trained very 
quickly due to the exponential decrease in the mean square error 
(MSE). After 30 iterations, the network was well trained (MSE < 0.3), 
and it continued to improve marginally after that point, yielding a good 
classification rate of 83.21% overall with 20 hidden units, the RBFN with 
PSOGSA proved to be very successful with this type of input (Figure 9).

Figure 7: Three Combinations of data sets and 4 different training and activation functions with Matrix Completion.
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Data Set: CAD_dataset

Inputs: 19x687

Targets: 2x687

In the CAD dataset, the RBFPSOGSA algorithm trains very 
quickly due to the exponential decrease in the Mean Square Error 
(MSE) After 40 iterations, the network was well trained (MSE < 0.15) 
and it continued to improve marginally after that point, yielding a 
good classification rate of 92.55%

Regarding the simple dataset, this algorithm did not react very 

well. Nonetheless, it could be inferred that this is likely due to the 
number of feature inputs.

Conclusion
This work addressed the prediction of Coronary Artery Disease 

by using patient information as a set of data to feed the RBF neural 
network. Two methods were used for training the RBF neural 
networks: Extended Kalman Filtering (EKF) and Particle Swarm 
Optimization and Gravitational Search Algorithm (PSOGSA). We 
found that both methods perform significantly differently on different 
subsets of the training and validation data. The prediction probability 

Combinations of 
training algorithms 
& activation 
functions

Best results of different data sets

Set No 1 Set No 2 Set No 3

Training 
Algo

Act 
Fcn

Train 
Error 
%

Test 
Error%

Valid 
Error%

Accur
%

Best
iter

Train 
Error%

Test 
Error%

Valid 
Error% Accur % Best

iter

Train 
Error 
%

Test 
Error %

Valid 
Error 
%

Accur % Best 
iter

Quasi 
New R4R 2.67 6.00 2.51 97.4 9 4.67 1.00 2.01 97.4 14 5 2 3.52 96.4 4

Quasi 
New Tps 7.67 5.00 5.53 94.4 1 5.00 1.00 1.51 99.4 16 4 1 1.51 98.4 6

SCG R4R 5.67 8.00 4.52 95.4 12 9.00 4.00 6.03 93.9 45 15.33 14 14.57 85.4 1

SCG Tps 3.00 6.00 3.02 96.9 41 5.67 1.00 2.51 97.4 22 4.67 3 4.02 95.9 90

Table 8: Summary of the best result obtained from Figure 11.

Combinations of 
training algorithms & 
activation functions

Best results of different data sets

Set No 1 Set No 2 Set No 3

Training 
Algo Act Fcn

Train 
Error 
%

Test 
Error%

Valid 
Error%

Accur
%

Iter 
no

Train 
Error%

Test 
Error%

Valid 
Error%

Accur 
%

Iter 
no

Train 
Error %

Test 
Error 
%

Valid 
Error 
%

Accur 
%

Best 
iter

Quasi New R4R 2.67 3.00 0. 04 99.6 7 3.67 4.00 2.08 97.2 7 3 2.09 1.02 98.2 6

Quasi New Tps 3.57 4.00 2.02 97.8 5 3.00 4.00 1.08 98.2 21 4 3.00 1.04 98.4 11

SCG R4R 4.67 9.00 8.06 91.4 9 6.04 3.00 1.02 98.8 13 3.35 5.00 0.06 99.4 20

SCG Tps 3.00 5.00 4.0 96 4 4.00 2.00 1.02 98.8 17 3.00 2.09 1.02 98.8 17

Table 9: Summary of the best results obtained from Figure 12.

Best results of different data sets

Set No 1 Set No 2 Set No 3

Training 
Algo Act Fcn Train 

Error %
Test 
Error%

Valid 
Error%

Accur
% Iter no Train 

Error%
Test 
Error%

Valid 
Error% Accur % Iter no

Train 
Error 
%

Test 
Error 
%

Valid 
Error 
%

Accur 
%

Best 
iter

Quasi 
New R4R 28.33 3.00 6.95 93.0 2 20.00 21.00 8.56 91.4 3 9.00 23.0 8.02 91.9 29

Quasi 
New Tps 28.67 3.00 10.70 93.0 1 14.67 22.00 7.49 92.5 21 9.00 23.0 8.02 91.9 49

SCG R4R 26.00 3.00 8.02 91.9 76 11.33 27.00 8.02 91.9 81 12.33 28.0 10.70 89.3 66

SCG Tps 27.67 3.00 6.95 93.0 2 23.67 25.00 8.02 92.5 3 11.33 27.0 6.95 91.9 3

Table 10: Summary of the best result obtained from Figure 13
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of this combination resulted in an accuracy of about 92%, using cross 
validation. We also noticed that the classifier has different outcomes 
for predicting data in different classes. This suggests the possibility 
that an ensemble of classifiers trained on different parts of the dataset 
might result in greater performance to meet the need of each sub-
dataset. Results obtained on the cancer data set were better than the 
Hospital Data set, proving the efficiency of the different combinations 
(two training algorithms with two activation functions); since the 
Cancer data set was complete and there were no missing or erroneous 
data, the different combinations of testing, training and validation sets 
did not have a significant difference.

In supervised machine learning, the aim is to identify the 
relationship between some inputs and response data for regression 
or classification problems. For example, we are given demographic 
and historical medical data of the patients as the inputs along with 
the diagnosis data on a particular disease as the response. The paper 
attempted to find the underlying functional relationship between 
the medical observations and diagnosis data in order to predict the 
presence or absence of the disease from new medical data.
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