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Introduction
Serratia marcescens is a Gram-negative and mesophilic 

microorganism found in water, soil, plant, and animals; it is transmitted 
by direct contact and via saline solutions. Their resistive infections 
are normally treated with specialized formula antibiotics [1]. Now 
it is infamous for its pathogenicity to hospital patients but there are 
many reports on the contamination of medical devices and nosocomial 
infections with this bacterium [2]. Pseudomonas aeruginosa is a Gram 
negative and mesophilic strain that frequently causing nosocomial 
infections of patients with reduced immunity and association with 
infections and are usually very tough to eradicate [3]. Staphylococcus 
aureus is a Gram positive and mesophilic microorganism commonly 
associated with contamination caused by foreign body material 
implants as in catheter-related infection [4].

Adhesion to surfaces by bacteria and other microorganisms tend 
to follow a survival pattern in the colonization of surfaces [5]. Initially 
the growth which is a thermodynamic process is mediated by diad 
interactions covering physical/chemical factors which also depend 
on the presence of nutrient that bring about growth for the bacterial 
colonization [6]. Virulence factors in the bacterial adhesion depend on 
the physical nature of the biomaterial surface that meet the body as in 
the case of various implants [7,8].
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Temperature is an abiotic factor that dramatically influence 
the efficacy of adhesion and to some extent on the hydrophobicity 
of bacteria / surface interface [9]. Tanaka Y, et al. (2004) reported 
that S. marcescens and other bacterial species have unusual bacterial 
characteristic that is, temperature- dependent to bacteriostatic activity 
and observed that higher environment temperatures S. marcescens 
suppress its own growth and the growth of other bacteria [10].

Material surfaces that meet microorganisms lead to the formation 
of biofilm by the initiation of bacterial adhesion to surfaces, a 
phenomenon governed by the triad interaction of physicochemical 
properties of the bacteria, environment and biomaterial characteristics. 
The main factors involved in polymeric surfaces are hydrophobicity 
and charge; thus negatively charged surfaces when in contact with 
negatively charged bacteria lead to electrostatic repulsion [11]. Most 
used polymers as biomaterials are polystyrene PS, polyethylene PE, 
polypropylene PP, polyurethane PU, polyethylene terephthalate PET, 
polytetrafluoroethylene PTFE (Teflon) and polymethylmethacrylate 
PMMA (Perspex).

As seen from the highlights the importance of these interactions 
as a functional bacterial growth parameters that this work is intended 
to investigate the influence of environmental factors (variation in 
growth time and growth temperature) and material surface factors 
on hydrophobicity and adhesion of P. aeruginosa, S. marcescens and 
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S. aureus cultured on different polymeric surfaces (PS, PP and PTFE).

Materials and Methods
Collection and isolation of bacteria

The bacteria isolated from clinical swaps were taken from different 
clinical laboratories and related hospital departments located in and 
around Kirkuk city to the sum of 132 swap samples. Then transferred to 
nutrient broth for enriching after which selected as grown on nutrient 
agar medium. Identification of these isolates were done biochemically 
[12].

Hydrophobicity assay (Microbial adhesion to hydrocarbon) 
MATH

The method proposed by Zabielska J, et al. (2017) with some 
culture modifications of S. marcescens, P. aeruginosa and S. aureus were 
activated in Luria Bertani broth (LB) by incubation for 24 hrs. at 30℃ 
[13]. The inoculums (A1) was mixed with P-xylene and incubated for 
10 min at 5, 25 and 40℃. Samples were homogenized and inoculated 
once again for 45 min. The samples could be separated in two phases 
(aqueous phase and hydrocarbon phase). The aqueous phase (A2) 
was recorded by spectrophotometer at 520 nm [13]. The percentage 
of hydrophobicity index (HI) of cell adhesion to hydrocarbon was 
calculated in the following formula:

• HI (%) = [(A1 – A2) / A1] × 100

The results were evaluated according to the scale: strong 
hydrophobicity >50%, moderate hydrophobicty 20-50% and low 
hydrophobicity <20% [14].

Adhesion to biomaterials

All strains of bacteria were tested for adhesion to plastic materials 
includes polystyrene PS, polypropylene PP, and polytetrafluoroethylene 
PTFE (Teflon). Bacterial samples were cultivated in Tryptic Soy Broth 
(TSB) for 24 hr at 30℃. 20 µl of bacteria was carried into 230 µ of TSB 
on plastic plates. Plates were incubated at different periods of time (5, 
25, 40℃) for 1, 8 and 24 hrs., then the content was poured out and then 
rinsed with sterile water. The plates were dried, and adherent bacteria 
cells were fixed with 96% ethanol for 20-30 min. After wards, ethanol 
was removed, and bacteria were stained with 0.5% crystal violet. The 
dye was removed, and the plates were again rinsed with water. After 
drying, each plate decolorized with 96% ethanol and the absorbance 
was measured 570 nm. The blank sample was the growth medium, 
categories as positive 0.1≤OD or negative 0.1> OD [15].

Statistical analysis

All tests were designed in triplicate and expressed as mean 
+/- standard deviation error. Results that p≤0.05 were indicated as 
significantly statistic.

Results and Discussion
Bacterial sample swabs isolated from the various sites were 

processed immediately and the percentage incidence of S. marcescens, 
P. aeruginosa and S. aureus were recorded in each sample; 15 isolates 
identified as S. marcescens, 11 as P. aeruginosa and 9 as S. aureus based 
on biochemical profiles and subsequent analysis. The strains selected 
due to their different features in order to evaluate the hydrophobicity 
and adhesion behavior of a Gram positive and Gram-negative 
microorganisms in response to changes caused by time-temperature 
environment and material surface.

The results of hydrophobicity index assessed by MATH method 
for S. marcescens, P. aeruginosa and S. aureus at different growth 
temperatures are shown in Figure 1. S. marcescens shows strong 
hydrophobicity (62%) at 5℃ and progressively decreases to moderate 
(38%) at 25℃ and reaches low level (17%) at 40℃ in contrast to P. 
aeruginosa and S. aureus that show strong level (68%) and (66%) 
respectively at 40℃. Thus, the mode of such moderate-strong 
hydrophobic properties results in colonization of abiotic surfaces. 
Norouzi F, et al. (2010) presented hydrophobicity data of P. aeruginosa 
assessed by MATH method and most strains demonstrated moderate 
hydrophobic properties [16]. Tyfa A, et al. (2015) tested Gram-positive 
S. aureus using the same method and found strong hydrophobic 
behavior [17].

Bacteria with hydrophobic properties prefer hydrophobic material 
surfaces, thus material hydrophobicity dominate the mechanism of 
adhesion of bacteria in comparison to bacterial cell hydrophobicity. 
The correlation between the cell hydrophobicity and adhesion to 
polystyrene surface under variety of growth conditions appeared 
that this property was not enough to predict adhesive behavior of the 
bacterial strains [18]. The hydrophobicity contributes to show the 
adhesion in different conditions by the influence of other factors, such 
as surface charge, presence of flagella, fimbriae and exopolysaccharide 
production [19].

The crystal violet binding method was used to assess P. aeruginosa, 
S. marcescens and S. aureus strains capacity of adhering to biomaterials: 
polystyrene, polypropylene, Teflon by which their adhesive properties 
were evaluated. The adhesion assay represented by the absorbance at 
570 nm of the three bacteria under different growth conditions and 
material surfaces are displayed in figure 2 and figure 3. The results 
indicate that the time and temperature of the bacterial growth have 
varying influence on the capacity of P. aeruginosa, S. marcescens 
and S. aureus to adhere to polystyrene, polypropylene, and Teflon. 
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Figure 1: Influence of growth temperature on hydrophobicity index computed by the 
MATH method for S. marcescens, P. aeruginosa and S. aureus.
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Figure 2: Variation in adhesion represented by absorbance of P. aeruginosa, S. marcescens 
and S. aureus cultured at 40℃ for different growth times (1,8,24 hrs.) on different 
surfaces ( PS, PP, and PTFE ).
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S. marcescens demonstrated to become more hydrophobic than P. 
aeruginosa and S. aureus for all time-temperature environment.

Regarding incubation period, all the bacterial strains were able 
to adhere to all plastic material surfaces after 1 hr contact with the 
absorbance of P. aeruginosa and S. aureus isolates in the lead. After 8 
hrs. of contact for almost all strains absorbance ranged from 0.3-0.41, an 
indication to their moderate adherence. For long incubation period (24 
hrs.) P. aeruginosa and S. aureus remained in the lead with absorbance 
reaching 0.66-0.68 in comparison with S. marcescens at 0.38. Zabielska 
J, et al. (2017) upon studying adhesion of P. aeruginosa on polystyrene 
reported similar findings [13]. Regarding incubation temperature, 
all S. marcescens strains show lowest absorbance for all temperatures 
indicating moderate adhesion in comparison with P. aeruginosa and 
S. aureus that show strong adhesion. Moderate-strong adhesion can 
be correlated with the reaction rate activity of enzymes and so has a 
bearing capacity on the development of the bacterial cells. Optimum 
temperature result in the healthy growth of bacterial populations; 
conversely, temperature away from optimum value reduce bacterial 
growth efficiency due to a reduction in the bacterial enzyme reaction 
rates [20].

Regarding material surface, the results of adhesion of the three 
bacteria on different surfaces are shown in Figure 4. Teflon surface show 
low adhesion when compared with polystyrene and polypropylene for 
all strains. Although Teflon show less adhesion characteristics with 
polystyrene and polypropylene nevertheless bacterial adhesion exhibit 
their own preference that depend on bacterial genus and species that 
dominate the adhesion mechanism. Liu Y, et al. (2004) have shown 
that the microbial adhesion strongly depends on the hydrophobic- 
hydrophilic properties of interacting surface [21].

Conclusion
From this work we conclude that the bacterial adhesion efficacy 

is dominated by the interaction of bacteria with their physical 
environment (temperature and contact material surface), the most 
important of which is the surface material where colonization occur. 
In addition, Teflon has shown the lowest adherence possible relative to 
polystyrene and polypropylene. 
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Figure 3: Influence of growth temperature (5, 25, 40℃) on adhesion of P. aeruginosa, S. 
marcescens and S. aureus at growth time of 24 hrs. cultured on different surfaces (PS, PP, 
and PTFE).
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