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Introduction
The biomechanical and anatomical morphology of subtrochanteric 

femur fractures is complex. Their management has advanced to reduce 
complications, improve patient functionality, and prompt ambulatory 
recovery [1-6]. Briefly, the bone’s structural subtrochanteric region 
comprises primarily cortical bone [2,7]. During gait, it sustains 
significant compression forces on the medial side as compared to the 
tension forces on the lateral side and is subject to multiple deforming 
muscular forces which give the classic radiographic presentation 
and ultimately lead to a more challenging reduction [2,8-11]. The 
incidence of these injuries is varied, accounting for approximately 10 
- 34% of proximal femur fractures with a bimodal age and mechanistic 
distribution [9,12].

Intramedullary nailing (IMN) remains the gold standard for 
femoral shaft and subtrochanteric fractures. It allows early recovery 
and return to activities [13]. Antegrade IMN is one of the most stable 
and reliable fixation techniques for controlling the proximal fragment 
given the deforming forces present and the lower risk of malalignment 
[7,12,14,15]. Current principles state that fractures within 5 cm from the 
lesser trochanter (LT) have been considered a relative contraindication 
to retrograde IMN due to the muscular deforming forces and prior 
reported complications (i.e., delayed union, malunion, need for second 
surgeries) [16-18]. Although this region has been traditionally defined 
as subtrochanteric, its low reproducibility and omission of ethnic 
variations arguably make it an outdated, arbitrary definition. The scope 
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of this review article aims to expose Koch’s initial understanding of 
the proximal femur biomechanical composition and behavior, and 
evolution in the management of subtrochanteric femur fractures [8].

Koch’s Proximal Femur Structure and Biomechanics
A fracture in the proximal femur is subject to multiple deforming 

muscular forces that present with a classic radiographic presentation 
of procurvatum and varus, and can complicate reduction [9,10]. 
Koch’s 1917 biomechanical work of the femur provides no definition 
of the subtrochanteric region or the calcar but describes in detail the 
cortical and trabecular bone system around the LT with its implicated 
withstanding forces (Figure 1) [7,8]. Koch stated that bone cross-
sectional analysis is the most accurate way to compute bone strength 
in the proximal third of the femur [8]. He describes the, later called, 
calcar as the cortical thickening that starts proximally posteroinferior 
to the femoral neck and extends posteromedial and distal to LT, while 
thinning out around the LT (Figure 1) [7,8,12]. Based on his work, 
the medial portion of the proximal third femur from approximately 
2.5 - 7.5 cm from the LT is subject to high compression forces [7,8]. 
For instance, the medial compression forces in a 200 lb individual can 
generate on average about 1200 lb/in2 [8]. Koch advocated that his own 
findings in a 35-year-old, 6 ft tall African American male could reflect 
structurally the femur in a healthy normal individual, being subject 
to variability based on age, sex, ethnicity, occupation, body weight, 
etc. [8]. In addition to the aforementioned structure, the vasculature 
is precarious making fracture consolidation difficult in the absence 
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limits of the subtrochanteric region. The most commonly agreed distal 
limit extension is 5 cm from the LT. The Seinshemer and AO were the 
most frequently used in the encountered literature [23]. For instance, 
Fielding’s anatomic classification for subtrochanteric fractures might 
stem anatomically from Koch’s biomechanical understanding of the 
femoral proximal third structural bone conformation. It is divided into 
three prognostic types depending upon the distance from LT: I, at LT; 
II, 0 - 2.5 cm below LT; III 2.5 - 5 cm below LT [2,12,24]. Although 
classifications were found to be historical (low reproducibility and omits 
individual or ethnic variations), in the clinical setting, traditionally 
subtrochanteric fractures are those occurring within 5 cm of the LT 
[8,23,24]. Moreover, no classification seems to guide surgical treatment 
choices apart from comminuted fractures or those that extend into the 
trochanteric region. These fractures lead to a higher fixation failure 
rate, and thus screw-plate or IMN fixation can be used for stable 
fractures, and IMN for unstable fractures [23,25,26]. Over time, with 
the improvement of IMN implants and reduction techniques, the 
clinical utility of classifications has decreased [26]. Loizou et al. propose 
a classification system with significant inter- and intra-observer 
reliability, that may guide treatment options, but testing outcomes are 
not established yet [23].

Koch’s descriptive biomechanical work of the cross-sectional area 
appears to be a more accurate method to evaluate the bone strength 
at the proximal third of the femur. It approximates the patient’s 
physiognomy given the variability in the subtrochanteric region due to 
age, activity, and body habits. Therefore, hypothetically, radiographic 
measured fracture distance from the LT in cortical diameters, instead of 
millimeters, would create a standardized relative definition of proximal 
femoral shaft fractures that are tailored to patient physiognomy and is 
not subject to radiographic magnification [27]. 

Evolution in Subtrochanteric Fracture Management
The most common management of subtrochanteric fractures is 

surgical fixation which currently involves IMN and plating (e.g., fixed 
angle and locking). IMN has evolved enough to become the gold 
standard due to decreased operative times and blood loss, shorter time 
to union, lower nonunion rate, lower reoperation rate, and for allowing 
immediate mobilization [4-6,9,13,28,29]. A biomechanical study has 
shown IMN to have a higher withstanding load and less varus collapse 
versus blade plates in comminuted subtrochanteric femur fractures 
[30]. These treatments have undergone evolution throughout the years. 

Interestingly, ancient Egyptian mummies were found with 
intramedullary implants in the lower extremities. But IMN stabilization 
through surgery was first reported by anthropologists in 1524 on 
Hernán Cortes’ explorations [3]. They witnessed surgeries in which 
the medullary cavity was accessed with obsidian knives and a wooden 
stick with resin was inserted to stabilize the fracture [31]. In the mid 
to late-1800s, physicians in Germany published research on IMN 
osteosynthesis with the use of ivory pegs on diaphyseal fractures of 
the femur and tibia [32]. Later that century, physicians in Germany 
began using ivory based IMN fixation devices for the treatment 
of pseudarthrosis in the femur. These were further stabilized with 
experimental interlocking nails and pins also made from ivory to 
improve rotational stability [33,34]. Julius Nicolaysen is regarded as 
the father of IMN as he highlighted the biomechanical advantage of 
nail length and the use of static interlocking screws at the proximal and 
distal end of the bone [34]. While the ivory material initially worked, 
researchers found that it was resorbable and did not last long enough 
for stabilization to be maintained. Fixation transitioned to the use of 

of adequate medial support which can lead to nonunion, hardware 
failure, and reoperations [12]. Although Koch’s work contributes to 
understanding the biomechanical stress of the femur, further research 
by Rybicki et al. adds to his theory and related biomechanical intricacies 
that are not the focus of this study [11].

Ward’s Triangle
Frederick O. Ward described in 1838 the now-called Ward’s triangle 

as the area in the femoral neck and head with the lowest bone mineral 
density where compressive and tensile forces balance each other [19]. 
Its borders are made up of the three main compressive and tensile 
trabeculae; the primary compressive trabeculae which are vertically 
oriented from the medial femoral head, the principal tensile trabeculae 
from the inferior aspect of the fovea to the greater trochanter, and lastly 
the secondary compressive trabeculae from greater to LT [20]. Studies 
on the proximal femur have found that the thickest cortex is found at 
the upper wall of the femoral neck, as well as the medial and lateral 
walls of the trochanteric area, with Ward’s triangle being in the center 
[21]. These three areas form the triangle, and Xu et al. hypothesized 
that this area, when under physiologic load, reduces shear forces 
and the bending moment of the femur and balances the distribution 
throughout [21]. The triangular theory is in line with Koch’s theory, 
with his descriptive analysis of the thick inferior-medial femoral neck 
cortex, and its critical role in withstanding the balance of the forces 
placed on the proximal femur. Fractures in this area lead to mechanical 
instability, and theoretical restoration of the three parts of the triangle 
leads to a significant advantage in terms of stability [22].

No Ideal Subtrochanteric Classification System
Subtrochanteric fractures have multiple classifications [23]. The 

shortcomings of current classification schemes include substantial 
overlap with other fracture types (e.g., Seinsheimer or Russell and 
Taylor trochanteric classifications), interobserver variability or lack of 
agreement, and limited value in guiding clinical treatment options [23]. 
Loizou et al., reviewed and compared 15 identified different classifications 
from 1949 to 1992, with only 8 of these specifying the upper and lower 

Figure 1: (a) Coronal and (b) sagittal sections of Koch’s biomechanical study in 1917, 
showing the trabecular pattern and the cortical bone around the lesser trochanter (*: cortical 
bone structure projecting posteroinferior to the femoral neck, towards the posteromedial 
aspect distal to the lesser trochanter, with thinning around the lesser trochanter). (c) Anterior 
and (d) posterior schemes of deforming muscular forces around the hip, involved in 
displacing the proximal and distal fragment. These result in proximal fragment abduction, 
flexion, and external rotation by the abductors (gluteus medius and minimus), hip flexors 
(iliopsoas), short external rotators (piriformis, obturator internus, quadratus femoris, 
superior/inferior gemelli); and distal fragment adduction and shortening by adductors, and 
gracilis.  

Note: GT, greater trochanter; LT, lesser trochanter; HF, hip flexors; HAb, hip abductors; 
HAd, hip adductors; and ER, external rotators.
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metallic materials in the 1900s, which presented its own challenges as 
metallic nails would loosen due to tissue reactions in the body [35]. At 
the turn of the century, the biomechanical advantage of a longer, solid 
nail for the stabilization of inter and subtrochanteric fractures of the 
femur was realized. With the advances in aseptic technique, anesthesia, 
and technical advances in materials, the management of fractures 
began to improve. In the first half of the 19th century, the introduction 
and progress of X-rays (i.e., 1910s) improved visualization, less invasive 
techniques to preserve biology, as well as IMN reaming (i.e., 1940s) 
prior to nail insertion to increase the surface area in contact with the 
nail improving stability [3,32,34]. IMN fell out of favor in the 1960s as 
nail designs of the time made it difficult to reduce and stabilize oblique 
and comminuted fractures, but this was improved with the renascence 
of interlocking screws idea with Künstcher and the cloverleaf-shaped 
nail [3]. Later, the concept of dynamization was introduced into newer 
designs to enhance bone healing in stable fracture patterns and those 
non-union cases [3]. Antegrade and retrograde IMN insertion are both 
used, with situations of both being discussed later in this review.

Extramedullary fixation is the other stabilization option for 
subtrochanteric fractures [36]. The first plate osteosynthesis method 
was documented in the late 1800s. The plates were used to treat fractures 
and non-unions of the femur, radius, humerus, and ulna. The first angled 
blade plate for osteosynthesis of femoral neck fractures was designed in 
1914 [32,37]. Further research has demonstrated the effectiveness of the 
fixed angle blade since its introduction in the 1960s in the treatment 
of subtrochanteric fractures [24,38,39]. However, the use of blade 
plates for acute injuries can lead to higher failure and revision rates, 
and their use should be limited when there is comminution, medial 
calcar involvement, subtrochanteric extension, and poor bone quality 
[9,38,40]. It has been investigated that the dissection required for fixed 
blade plating de-vascularizes the bone and surrounding tissues, which 
may lead to a delay in healing [38]. As mentioned, the subtrochanteric 
region vasculature is precarious and could lead to delayed fracture 
consolidation, or non-union even in the latest reports on using IMN (7 
- 20%) [41]. However, for such complications, fixed-angle blade plates 
offer a reliable option for revision surgery with a high union rate [42]. 
It allows the removal of soft tissue interposition at the fracture interval, 
correction of malalignment, and addition of graft augmentation and 
compression. A recent intertrochanteric and subtrochanteric non-
union management literature review of 289 cases found that 65.7% of 
them were treated with a blade plate (61.6% were 95-degree angle), and 
the union rate ranged from 91 - 100% [42].

Intramedullary Nailing, Antegrade or Retrograde, 
Where Are We At?

In terms of nail entry, there are two antegrade approaches, the 
piriformis and trochanteric entry points. In the piriformis approach, 
the entry of the guide wire is centered over the piriformis fossa and 
in line with the femur axis. In the trochanteric entry, the guide wire 
is slightly medial over the tip of the greater trochanter and is lateral 
to the long axis [9]. The entry point does not affect the union rate, but 
the trochanteric nail often shows less operative time and intraoperative 
radiation and is less traumatic to the abductors [43]. On the other 
hand, piriformis entry nail reduces the incidence of varus malreduction 
and medial cortex injury [44]. Regarding retrograde IMN, it was first 
introduced as a concept in the 1970s, which later evolved into an 
intercondylar notch entry point [45,46]. Initially introduced to cope 
with post-surgical hip pain and abnormal gait/balance after antegrade 
IMN, it eventually became advocated for treatment of supracondylar 
or intracondylar distal femur fractures and ipsilateral shaft or neck 

fractures [45,47]. Its indications have expanded to overcome antegrade 
IMN limitations and now include polytrauma patients, multisystem 
injury, hip soft tissue injury, obesity, pregnancy, ipsilateral pelvic 
ring/hip/acetabular/tibia fractures, bilateral femur shaft fractures, 
and ipsilateral hip/knee arthroplasties [16,18,46,48]. Early reports of 
retrograde IMN demonstrated slower union and higher nonunion 
rates, however, nonunion rates have improved with reaming and use 
of larger diameter nails, thereafter, matching the low nonunion rate of 
antegrade IMN (<5%) [16,48-51]. Brewster et al., comparing retrograde 
vs antegrade IMN, recently found no difference in long-term functional 
outcomes but did note an increased rate of hip pain with antegrade 
IMN [13,49,52,53]. Hence, retrograde IMN has become a feasible, 
convenient technique given its aforementioned broader indications, 
faster setup/positioning, shorter operating time, decreased blood loss, 
and less radiation time [16,46,53,54].

Given its convenience in some settings for femoral shaft fractures, 
and the concern of a short segment fixation for proximal third femur 
fractures, several studies show conflicting results when considering 
retrograde IMN as an equivalent option for subtrochanteric fractures. 
DiCicco et al., in their 16-patient retrospective study of subtrochanteric 
fractures treated with retrograde IMN, found a union rate of 64.7% 
[18]. This improved to 100% after 5 patients underwent 6 reoperations 
for implant revision, at approximately 22 weeks, with a varus deformity 
averaging 5.06 degrees (35 % malreduction rate) [18]. Kuhn et al. 
reported that fractures within 10 cm from the LT can be treated with 
either antegrade or retrograde IMN with no difference in outcomes 
[55]. Yet, some argue that if the fracture is closer than 4 cm from the 
LT, retrograde IMN should be avoided due to higher complication 
rates [10,17]. Moreover, Kuhn et al. explored “stressing” the concept 
of the fracture distance from the LT in relation to the proximal end of 
the nail formulating a ratio and found no direct relationship between 
adverse outcomes and the proximity of the fracture to the LT. They also 
found that the working length of the nail and nail advancement as far 
proximal as possible are important in preventing malunions [10]. In 
relation to the retrograde nail proximity to the trochanteric region, a 
biomechanical study evaluating the proximal femur strain showed that 
the proximal end of the nail ending at 4 cm distal from the LT revealed 
an increasing trend in torsion and axial stress [56]. In addition, another 
biomechanical study by Tejwani et al., recommended ending the tip of 
the retrograde nail at or above the LT to avoid stress risers [57]. 

A recent study by Parry et al looked at cortical diameters as a 
more individualized measure to define proximal third femur fractures 
comparing antegrade and retrograde IMN outcomes [27]. In a cohort of 
54 patients with proximal femur fractures within 3 cortical diameters, 
there was no difference in outcomes (i.e., union rate, time to union, 
complications) among antegrade versus retrograde IMN-treated groups, 
and there was no varus malalignment [27]. As found in the literature, 
the retrograde group had less blood loss and operative time [27]. 
Interestingly, the median number of cortical diameters at 5 cm from the 
LT was 1.6 (range 1.2-2.0) [27].  Seems, retrograde IMN for a proximal 
femur fracture within 3 cortical diameters (sparing intraoperative 
advantages) provides similar outcomes to antegrade IMN. Cortical 
diameter theoretically controls the patient’s size, physiognomy, and 
radiographic magnification. Although a biomechanical interpretation 
of this clinical study would be interesting to pursue, this approximates 
Kock’s preliminary understanding of the cross-sectional area as a bone 
strength parameter that could potentially guide choosing treatment 
options [8]. 
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Conclusion
In conclusion, Koch found that there are high compression 

forces near the LT on the proximal medial third of the femur and 
hypothesized that cross-sectional area was a more accurate measure 
of bone strength [8]. Intramedullary nailing as well as extramedullary 
fixation through fixed angle and locking devices are the current 
treatments for subtrochanteric fractures. The IMN requires decreased 
operative time, causes less blood loss, and increased mobility, and thus 
is the gold standard treatment [4,5,29]. Antegrade and retrograde IMN 
approaches have no difference in long-term functional outcomes [13]. 
Cross-sectional measurements at the fracture and the distance from 
LT could potentially guide IMN treatment options, but there remains 
further research.
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