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Introduction 
Radiology has undergone a groundbreaking journey since its 

inception, marking a significant impact on modern medicine. From 
the discovery of X-rays to the subsequent incorporation of AI and 
ML, this multidimensional field continually evolves, transforming 
itself and the healthcare ecosystem it supports. This comprehensive 
examination examines the interaction between AI and ML in radiology, 
investigating their foundational principles, historical progression, 
practical implementations, inherent difficulties, and moral dilemmas. 
By enhancing comprehension of the contributions of AI and ML to 
radiology, this examination seeks to encourage insightful conversations 
among healthcare professionals, researchers, and policymakers, 
ultimately shaping the direction of the field and improving patient 
outcomes. The investigation delves into the fundamental concepts of AI 
and ML, their increasing influence in radiology, practical approaches to 
integration, and illustrative examples from various medical specialties 
[1, 2]. Additionally, it addresses challenges such as data accuracy, 
ethical considerations, and contemplates potential future paths in AI-
driven radiology.

The role of radiology in modern medicine

Radiology, the medical field focused on using different imaging 
techniques to diagnose and treat illnesses, has become a fundamental 
part of present-day healthcare, playing a crucial role in clinical practice. 
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It goes beyond simply identifying diseases and includes providing 
guidance for treatment and ongoing disease management. Proficiency 
in diagnostic techniques like CT (computed tomography) scans, MRIs 
(magnetic resonance imaging), PET (positron emission tomography) 
scans, ultrasounds, and X-rays are used to guide immediate medical 
interventions, monitor treatment progress, and visually document 
a patient’s health status. The detailed understanding of anatomical, 
physiological, and molecular disease processes that medical imaging 
provides has a significant impact on patient care, allowing for 
personalized treatments that improve outcomes and minimize adverse 
effects [3]. Radiology is an essential component of interdisciplinary 
medical teams, with radiologists providing accurate and timely imaging 
reports that enhance communication between specialists and influence 
important decisions, ultimately contributing to a holistic approach to 
patient-centered healthcare. As valued consultants, radiologists offer 
valuable insights into the selection and interpretation of appropriate 
imaging studies, while also playing a crucial role in ensuring radiation 
safety and dose management [4, 5]. Their expertise helps to paint a 
clearer clinical picture, providing insights that can greatly influence 
patient care.

A brief history from Wilhelm Roentgen’s groundbreaking 
discovery to magnetic fields

Wilhelm Roentgen’s discovery of X-ray technology in 1895 to 
current advanced methods, the evolution of modern medical imaging 
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Abstract
Undoubtedly, medical imaging research is currently dominated by discussions on Artificial Intelligence (AI), encompassing both diagnostic and therapeutic 

aspects. In the realm of diagnostic imaging alone, the quantity of AI-related publications has surged from approximately 100 - 150 annually during the period of 
2007 - 2008 to 1000 - 1100 annually in the years 2017 - 2018. Researchers have successfully utilized AI to automatically identify intricate patterns in imaging data 
and provide quantitative evaluations of radiographic attributes. Within the field of radiation oncology, AI has found application across various image modalities 
employed at distinct stages of treatment, such as tumor delineation and treatment assessment. Radiomics, a technique involving the extraction of a vast array of 
image features from radiation images using a high-throughput approach, currently stands as one of the most prominent research areas within medical imaging. AI 
serves as an indispensable catalyst in processing immense quantities of medical images, thereby unveiling disease characteristics that may elude human perception. 
This paper aims to provide a comprehensive overview of the historical progression of AI in medical imaging research, its current role, the challenges that must be 
addressed before widespread adoption in clinical settings, and its potential future. The paper also advocates the ongoing research, the embrace of cutting-edge imaging 
technologies, and the cultivation of strong collaborations between radiologists and AI developers.
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activity and offer invaluable insights into the functional condition 
of organs. Moreover, the progress in 3D imaging has revolutionized 
medical imaging by enabling a more precise understanding of spatial 
connections within the body. Consequently, this has enhanced 
diagnostic precision and surgical preparation considerably [9, 10]. 
The subsequent development of 4D imaging extended the limits by 
incorporating the temporal aspect, enabling the real-time observation 
of biological processes. The merging of functional and structural 
imaging led to the emergence of hybrid imaging technologies like 
PET/CT and SPECT/CT. These methods merge the benefits of both 
approaches, delivering extensive diagnostic data. For example, PET/
CT combines the metabolic insights of PET with the precise anatomical 
context provided by CT, greatly enhancing the precision of lesion 
identification and description. Interventional radiology, using imaging 
for minimally invasive procedures, has transformed healthcare. Real-
time visualization improves precision, enhances patient outcomes, and 
shortens recovery periods [2]. Image-guided biopsies are a safer and 
less invasive alternative to surgical biopsies with fewer complications 
and shorter hospital stays.

New frontiers in future

The integration of virtual reality/augmented reality (VR/AR) and 
AI is set to revolutionize the field of radiology, ushering in a new era 
in medical imaging. VR/AR technologies, which originated in the 
gaming and entertainment sectors, are gradually making their way into 
radiology, creating an immersive environment that is beneficial for 
both radiology training and clinical practice [11]. In the latter, these 
technologies have the potential to enhance the visualization of imaging 
data, thereby improving diagnosis and treatment planning. Meanwhile, 
AI, specifically machine learning, is making significant advancements 
in radiology, enhancing image analysis, and reducing diagnostic 
errors. Through the use of AI algorithms, data can be processed and 
interpreted, allowing for tasks that simulate or even surpass human 
cognitive abilities. Through the utilization of labeled examples, ML has 
the ability to extract intricate and advanced information from datasets 
that do not have labels. By combining AI with VR and AR technologies, 
there is a significant potential for enhancing the efficiency of radiology, 
improving the accuracy of diagnostics, and exponentially transforming 
treatment planning. Over the past twenty years, the field of radiology has 
refined computer-aided diagnosis (CAD) tools that are based on ML. 
These tools are poised to bring about an integrated diagnostic service 
that incorporates radiology, pathology, and genomics data, thereby 
enhancing the performance of CAD and improving the productivity 
of radiology services through AI-assisted workflows. Nevertheless, the 
integration of AI and VR/AR in radiology faces technical challenges, 
particularly in terms of incorporating AI-generated results into existing 
workflows. However, a proposed roadmap suggests the integration of 
AI-based image analysis algorithms, which would include a feedback 
loop system between radiologists and AI, enabling continuous 
improvement. An instance where AI and radiologists worked together 
was showcased through a study that showed enhanced identification of 
brain metastases. The ethical considerations surrounding the use of AI 
in radiology require thorough examination. While AI shows promise 
in radiology, ethical concerns arise, particularly regarding biases and 
the lack of transparency in AI decision-making [12-16]. It is crucial 
to advocate for ethical AI to ensure that discriminatory effects and 
injustices are avoided. Future advancements in AI in radiology should 
integrate perspectives from the field of social science.

The Progression of AI and ML
The purpose of this section is to provide an overview of the 

showcases the unyielding quest for scientific progress and its profound 
influence on radiology. Roentgen’s unparalleled X-ray breakthrough 
provided a non-intrusive insight into the human body, establishing 
the basis for contemporary imaging. Despite its initial shortcomings 
in depicting 2D images and distinguishing soft tissues, this underlying 
principle set the stage for more intricate, non-intrusive imaging 
techniques [6].

Sir Godfrey Hounsfield and Allan Cormack’s introduction of CT 
in 1973 marked a significant breakthrough, surpassing the limitations 
of 2D imaging by presenting a 3D format. A CT scan works by rotating 
X-ray sources and detectors around a patient’s body synchronized to 
differential absorption. By combining this with advanced computational 
algorithms, 3D volumetric data can be reconstructed from 2D images. 
Ultrasound imaging, which emerged in the 20th century, deviated 
from radiation-based technologies by utilizing high-frequency sound 
waves to generate real-time images of internal body structures. Its 
non-ionizing radiation properties, real-time imaging capabilities, and 
cost-effectiveness have made it widely applicable in various clinical 
fields, including obstetrics, gynecology, cardiology, and emergency 
medicine. Particularly in emergency and critical care medicine, point-
of-care ultrasound (POCUS) has played a vital role in facilitating 
rapid bedside assessments and expediting clinical decision-making 
[7]. In the 1970s, MRI was developed by Paul Lauterbur and Sir Peter 
Mansfield. This technology utilizes a powerful magnetic field and radio 
waves to produce highly detailed images of the body, especially of soft 
tissue structures. The non-ionizing nature of MRI, combined with 
its exceptional ability to differentiate soft tissues, has revolutionized 
medical imaging [2]. Manipulation of RF pulse sequence timing in 
MRI has further improved its diagnostic usefulness, allowing for the 
acquisition of various image types and the identification of distinct 
tissues and pathologies (Figure 1).

An evolution in radiology- transition from film to function

In addition to the disruptive advances in imaging methods, there 
was a significant change in the late 20th century: the shift from film-
based to digital radiography and the introduction of Picture Archiving 
and Communication Systems. This transition greatly improved the 
efficiency of acquiring, storing, and retrieving images, while also 
facilitating the seamless sharing and transfer of images within and 
between healthcare institutions [8]. The advancements in medical 
imaging technology did not cease with these developments. Functional 
imaging techniques, such as PET, renowned for its utilization of 
radiolabeled biochemical substances, and Single-Photon Emission 
Computed Tomography (SPECT), which employs gamma-emitting 
radionuclides to track biological processes, have shed light on metabolic 
and biological functions. These techniques provide a glimpse into cellular 

Figure 1: Timeline of medical imaging developments [7].
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comprised of separate yet interconnected systems, with each sector 
fulfilling a specific role and interacting uniquely within the realm of 
data science. AI is defined as the replication of human intelligence in 
machines that are programmed to imitate human cognition and actions, 
encompassing learning, problem-solving, reasoning, and perception 
[22]. AI can be categorized into two primary types: narrow AI, which 
is designed for specific tasks (such as facial recognition or voice 
commands), and general AI, which replicates a wider range of human 
intellect. The objective of AI is to create systems with autonomous 
intelligent functionality, capable of solving problems, making decisions, 
and performing tasks that typically require human intelligence. 
Machine learning, a subset of AI, focuses on the development of 
software that learns independently from accessed data. The process 
of acquiring knowledge is derived from examining observations or 
data to detect patterns and make informed future decisions based 
on these observations. Its main objective is to enable computers to 
independently adjust their actions without human intervention [23, 
24]. The primary types of ML algorithms are supervised learning, 
which uses examples to predict or classify new data, and unsupervised 
learning, which identifies inherent patterns and structures in the data 
without guidance from predetermined outputs. DL, a subset of ML, 
employs complex artificial neural networks (ANNs) (referred to as 
“deep”), allowing DL algorithms to model and comprehend intricate 
data patterns. These algorithms are particularly effective for tasks where 
manually extracting features is difficult, such as recognizing images 
or speech. It is important to note that these feature layers are learned 
from the data itself, rather than being engineered by humans [25]. 
They are based on an architecture inspired by the human brain and 
have demonstrated superior performance in visual recognition tasks, 
surpassing human capabilities. Understanding the interconnectedness 
between AI, ML, and DL helps in comprehending the contributions 
and advancements of each subfield within the broader AI narrative. AI 
forms the foundation for ML and DL. ML enhances AI’s potential by 
enabling machines to learn from data, and DL further enhances these 
capabilities by utilizing neural networks to decipher complex data 
patterns [26]. Each field enriches the broader AI domain, resulting in 
the contemporary AI landscape where each layer contributes to the 
development of intelligent systems.

ML foundation and techniques

A wealth of algorithms and methods underpin ML, empowering 

development of AI and ML, as well as explain their distinct yet 
interconnected terminologies and historical trajectory. As well as 
shedding light on the key machine learning algorithms and techniques 
that have shaped our technological landscape, it emphasizes how 
indelible their imprint is still present today [2].

Breakthroughs of AI

Historically, the development of AI, characterized by folklore and 
tales of artificial beings, has been rooted in the philosophy of human 
cognition as a mechanistic process, dating back to antiquity. In the 
1940s, programmable digital computers were developed, leading to the 
establishment of the field at the 1956 Dartmouth Conference, marking 
the beginning of modern AI concepts [17].

In the 1970s, MYCIN, an expert system that totally changed the 
game. It was created by Buchanan and Shortliffe, and the idea was to 
mimic human expertise using knowledge bases and inference engines. 
This was a huge deal because it made AI a big player in medical 
diagnosis and decision-making. Then, machine learning algorithms 
came along and shook things up even more. Decision trees in 1986, 
support vector machines in 1995, and neural networks in 1986 
expanded the AI world in healthcare. These algorithms analyze tons 
of data and opened up a whole new era of pattern recognition and 
predictive modeling in healthcare [18,19]. The turn of the century 
witnessed a shift with the arrival of deep learning (DL) approaches, 
specifically convolutional neural networks (CNNs). CNNs, modeled 
after the structure and function of the human brain, surpassed previous 
methodologies in image recognition tasks. They played a huge role in 
improving medical image classification, segmentation, and detection, 
all because they can learn from a lot of labeled data. The fast progress of 
AI in recent years is thanks to two main factors: the rise of big data and 
improvements in computational power. We now have a lot of electronic 
health records (EHRs), medical image collections, and datasets with 
annotations that we can use for training. And with advancements in 
hardware, like graphical processing units and distributed computing, 
we can run AI algorithms that require a lot of computational power 
much faster [20]. In the last few years, the rapid progress of AI 
language models, such as GPT-4, has led to diverse applications and 
implications across a wide range of industries, including the healthcare 
and medical imaging industry [2]. These models, capable of producing 
text that resembles human language and facilitating communication, 
have raised significant concerns. The undeniable potential of these 
models to make substantial contributions to medical research and 
patient care is tempered by experts expressing reservations about their 
limitations and the potential for inadvertently perpetuating inequalities 
or disseminating inaccurate information. Hence, it is essential to adopt 
robust strategies to responsibly manage these risks, which involve 
enhancing transparency regarding potential harms, enabling early 
identification of issues, and implementing regulatory measures and 
peer evaluations. Through these strategies, the goal is to ensure the 
optimal and ethical utilization of AI technologies, including language 
models, thereby positively impacting medical imaging and healthcare 
outcomes. Recognizing these milestones enables us to acknowledge 
the evolution of AI in healthcare, particularly in the field of medical 
imaging [21]. Currently, as a result of the interaction between rules-
based systems, traditional machine learning algorithms, as well as 
the transformative impact of DL techniques, we have established the 
foundation for the current state-of-the-art AI applications in radiology 
and other medical specialties (Figure 2).

Decoding AI, ML, and DL

The landscape of computational intelligence is a vast system, 
Figure 2: Illustration of AI model [21].
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A paradigm shift in radiology

AI has sparked a profound transformation in the realm of 
radiology, reshaping conventional processes and enhancing the role 
of radiologists. In the domain of image capture, AI enhances scanning 
techniques, optimizes image accuracy, and promotes advanced 
image reconstruction in MRI, CT, and PET procedures. Of particular 
note, deep learning expedites MRI scans, promoting efficiency and 
quality, with similar advancements observed in CT and PET image 
reconstruction [33-36]. AI significantly streamlines the process of 
radiologist analysis on chest X-rays, as demonstrated by a study where 
an AI system reduced interpretation delivery time from 11.2 days to 
just 2.7 days, underscoring the effectiveness of automated triage systems 
in streamlining healthcare workflows and improving patient care 
standards.

Radiology, being one of the early adopters of digital technology 
in healthcare, has effectively utilized ML in CAD tools for more than 
twenty years, demonstrating strong performance in both sensitivity and 
specificity. Despite facing various challenges, the integration of AI is 
seen as a crucial solution to overcome these obstacles, improving CAD 
performance, making radiology services more efficient, and promoting 
the development of integrated diagnostic services. The incorporation of 
AI in radiology reporting has resulted in structured and annotated data, 
ensuring consistent reports, and facilitating patient history tracking. 
These advanced tools generate comprehensive task lists that include 
relevant information from the patient’s history, aiming to enhance the 
accessibility and integration of reports into care pathways. In addition to 
revolutionizing reporting and imaging procedures, these cutting-edge 
systems also play a vital role in maintaining communication between 
providers and ensuring quality patient care by validating correlations 
between imaging diagnoses, radiological reports, and treatment plans, 
as well as identifying any discrepancies. Furthermore, AI optimizes the 
allocation of personnel and scanner usage, while also reducing radiation 
exposure, thereby increasing efficiency and the overall quality of care. 
With its wide-ranging capabilities, AI is reshaping the field of radiology 
and solidifying its essential role within the discipline.

Applications of AI in healthcare

The field of healthcare has been significantly impacted by AI, 
showcasing its ability to improve various aspects of clinical practice 
beyond just radiology. It has proven its worth in diagnostics, genomics, 
drug discovery, and optimizing healthcare delivery. Pathology, in 
particular, has seen tremendous progress with the implementation of 
AI algorithms for tissue analysis. This has greatly enhanced the accuracy 
and speed of diagnoses. Furthermore, automated image analysis tools 
have allowed pathologists to examine tissues at a microscopic level, 
identifying subtle histopathological characteristics that are often missed 
by human observers. AI has also played a crucial role in advancing 
digital pathology by transforming traditional glass slides into digital 
scans [37]. This enables remote diagnostics and collaborative work, 
which are essential in the digital era of telemedicine. AI has shown 
great potential in the field of cardiology as well, especially in the 
interpretation of electrocardiograms and echocardiograms. Advanced 
ML algorithms identify intricate cardiac patterns and irregularities, 
precisely forecasting conditions such as atrial fibrillation and heart 
attack. The exponential growth in echocardiography is apparent, 
with automated algorithms assisting in the interpretation of cardiac 
structure parameters, reducing differences in observation between 
individuals, and improving diagnostic accuracy. The intricate nature 
of genomics makes it a perfect candidate for AI intervention [38]. 
DL techniques decode genomic data, assisting in the identification of 
genetic variations associated with disease vulnerability, and creating 

computers to acquire knowledge from data. At the core of this field 
are two main types of machine learning: supervised and unsupervised 
learning [27]. Supervised learning, which dominates the ML landscape, 
utilizes established examples or training data, comprising input-output 
pairs. The goal is to create a function that can accurately predict or 
classify unfamiliar data by mapping input data to corresponding outputs. 
Key algorithms in supervised learning include linear regression, logistic 
regression, and decision trees. On the other hand, unsupervised learning 
explores the data space independently to uncover inherent patterns, 
structures, or relationships without predetermined outputs [28, 29]. 
Its focus lies in identifying intrinsic data structures, thereby providing 
insights that have the potential to address complex problems. Prominent 
unsupervised learning algorithms encompass clustering techniques 
like k-means and hierarchical clustering, as well as dimensionality 
reduction methods such as principal component analysis. ANNs mimic 
the operational framework of the human brain, carrying out intricate 
tasks through a network of interconnected artificial neurons organized 
in layers. The backpropagation algorithm, a crucial component of ANN 
operations, demonstrates a strong ability to handle faults, ensuring the 
system’s functionality even in the face of occasional neuronal failures 
[30]. ANNs enable the extraction of features and the identification of 
complex patterns, which are essential for ML. This, in turn, improves 
data representation and class differentiation by assisting with the 
preprocessing of raw data for feature extraction or selection. Advances 
in ANNs have led to the development of complex structures such as 
DL models that consist of multiple layers of neurons. Notably, CNNs 
utilize convolution instead of standard matrix multiplication in specific 
layers. Designed for processing pixel data, CNNs excel in tasks that 
involve pattern recognition in images, audio, or text. They significantly 
contribute to computer vision and Natural Language Processing (NLP) 
by simplifying complex patterns into abstract representations through 
layers of features [2].

Integrating AI into Medical Imaging
This section explores the significant role of AI in the field 

of medical imaging, highlighting the groundbreaking changes it 
triggers in radiology. The versatile potential of AI, ranging from 
transforming image acquisition to reshaping radiological analyses, 
and from optimizing reporting to creating individualized medical 
stories, places AI at the center of the ongoing healthcare revolution 
[31]. Beyond radiology, this transformation extends to other areas of 
healthcare, including pathology, cardiology, genomics, drug discovery, 
and healthcare delivery, where the impactful advancements of AI 
are increasingly acknowledged. Wrapping up this examination is the 
emerging concept of AI-enabled personalized medicine, emphasizing 
a more proactive, patient-centered, and comprehensive patient care 
approach (Figure 3) [32].

Figure 3: Workflow diagram illustrating the role of AI in radiological practice [2].
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AI models have been developed to distinguish between benign and 
malignant tumors in mammography, achieving performance metrics 
that are comparable to those of human radiologists. This enables the 
early detection of breast cancer. However, there are various challenges 
to integrating AI into radiology. Developing robust and dependable AI 
models requires access to extensive datasets and thorough validation, 
which can be difficult due to privacy concerns and the diverse nature 
of medical imaging data. Additionally, ensuring the interpretability 
and explainability of DL models, which are often seen as “black boxes,” 
is crucial for gaining trust and acceptance from both radiologists and 
patients. Lastly, incorporating AI into existing clinical workflows and 
promoting a harmonious collaboration between humans and AI are 
vital for fully realizing the potential of AI in radiology and translating 
these technological advancements into tangible improvements in 
patient care [47, 48].

Prognostics with radiomics and predictive analytics

Radiomics is a burgeoning area in the medical field that revolves 
around extracting complex data from radiological images. It holds 
immense promise for medical diagnostics, prognosis, and assessing 
how diseases respond to treatment. Nevertheless, radiomics encounters 
obstacles such as the need for standardization and validation to 
guarantee consistent and dependable results. The primary advantage of 
radiomics lies in its capacity to supplement traditional clinical practices 
with precise and quantitative information, thereby transforming the 
decision-making processes in medicine. The exponential growth 
of medical imaging data has created an ideal environment for the 
utilization of ML and data-driven science. Radiomics-based decision 
support systems for accurate diagnosis and treatment are on the verge 
of becoming indispensable tools in modern medicine [51]. However, 
it is important to acknowledge that the journey of radiomics towards 
full clinical applicability is not devoid of challenges. The field currently 
grapples with the essential requirements of standardization and 
validation to ensure trustworthy and reproducible outcomes. In this 
context, the emergence of AI offers promising opportunities to overcome 
these challenges and unlock the complete potential of radiomics. By 
utilizing AI-driven analytics, accurate predictions regarding disease 
progression, treatment response, and patient survival can be made by 
modeling complex data sets. This advancement provides clinicians 
with an unprecedented amount of information that goes beyond what 
human perception alone can achieve. In the field of oncology, radiomics 
has played a vital role in identifying different molecular traits and 
the spread of cancer to lymph nodes, as well as evaluating treatment 
response and predicting disease survival. It is important to recognize 
that the integration of AI into radiomics is still in its early stages. To 
fully utilize the potential of AI in medical imaging, there needs to be 
a focused effort on research and development [52-53]. This includes 
promoting large-scale data sharing, establishing standardized protocols 
for data collection, defining clear evaluation criteria, and implementing 
robust reporting guidelines. These components are essential for the 
growth and widespread adoption of radiomics as a field, ushering in a 
new era of precision medicine.

Optimization of workflow using AI

AI is gaining momentum in the field of radiology, with the goal 
of optimizing workflows and improving the effectiveness of non-
interpretive tasks. When combined with NLP, AI has the ability to 
automate the prioritization of imaging studies, placing urgent cases at 
the top of the list by extracting and analyzing key patient data from 
EHRs. This streamlines the process of triaging patients, generating 
radiology reports, and managing follow-ups for incidental findings. 
The implementation of AI greatly enhances the radiology process by 

opportunities for customized treatment approaches based on individual 
genetic profiles. AI has proven to be invaluable in the realm of drug 
discovery by expediting the search for powerful therapeutic compounds 
and subsequently expediting the drug development process. For 
instance, AI can anticipate the pharmacokinetic and pharmacodynamic 
properties of novel compounds, identify potential drug targets, and 
simulate clinical trials, significantly reducing the time and costs 
associated with drug development. Additionally, AI’s ability to optimize 
healthcare delivery is remarkable [2]. AI-driven predictive analytics can 
improve hospital workflows by accurately predicting patient admission 
rates and optimizing the allocation of resources. AI applications for 
cost reduction have also emerged, with ML algorithms identifying 
inefficiencies in healthcare systems, thus facilitating cost-effective 
care. The ultimate goal of these AI applications is to enhance patient 
outcomes by streamlining diagnostic procedures and personalizing 
treatment plans [39-41].

Applications of AI in radiology
This portion takes a critical look at the practical uses of AI in 

the field of radiology, delving into the innovative methods it brings 
to imaging techniques, diagnosis, and patient care. By exploring AI-
driven approaches like DL and CNNs, the portion highlights how AI is 
revolutionizing the process of image segmentation and classification, as 
well as diagnostics [42, 43]. Additionally, it investigates the predictive 
capabilities of radiomics and the potential of AI in optimizing workflows. 
Throughout the discussion, the portion also addresses the inherent 
difficulties and obstacles in integrating AI in radiology, emphasizing 
the importance of interpretability, validation, standardization, and the 
preservation of the human element in healthcare [44].

Image classification and segmentation

DL has sparked a notable change in the field of radiology, 
particularly in the areas of image partitioning and categorization, where 
significant progress has been achieved. The advancements brought about 
by these AI-centric methods have increased the accuracy and speed of 
diagnoses, thereby improving the abilities of radiologists and enhancing 
patient care. However, the integration of AI poses various challenges 
that must be overcome to ensure its successful implementation and 
use in radiology. CNNs, with their inherent ability to learn complex 
patterns through backpropagation, have emerged as powerful tools for 
computational visual tasks, including various applications in radiology 
[45]. Their unique architectural layers, which encompass calculations in 
convolutional layers and predictions in fully connected layers, combine 
to create an efficient system for detecting objects. These networks have 
exhibited impressive proficiency in object detection, thanks to their 
integrated capabilities in feature extraction, semantic segmentation, and 
handling multi-scale features. The efficiency and effectiveness of CNNs 
can be further enhanced through the utilization of transfer learning, 
which allows for the reuse of existing models. This approach improves 
accuracy, enables efficient training with limited datasets, and reduces 
the need for labor-intensive and error-prone manual segmentation. An 
example of CNNs’ potential is the segmentation of lung nodules from 
CT scans using AI, which has demonstrated excellent performance in 
the early detection and treatment of lung cancer. It achieved an AUROC 
of 94.4%, outperforming six radiologists in the task. CNNs have played 
a crucial role in the segmentation of brain tumors from MRI scans 
and the examination of retinal images for early indications of diabetic 
retinopathy, further highlighting the wide-ranging applicability and 
adaptability of AI in the field of medical imaging [46]. The use of CNNs 
in image classification, another important AI application in radiology, 
enables the differentiation between normal and abnormal findings. 
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61]. For example, an AI model developed by researchers was able to 
accurately identify blockages in large blood vessels using CT scans, 
demonstrating a high level of accuracy in determining which patients 
would benefit from timely intervention. Zhu et al. utilized AI algorithms 
to predict how patients with acute ischemic stroke would respond to 
thrombolysis, combining imaging features with clinical data to assist 
clinicians in developing effective treatment plans. AI also plays a crucial 
role in the early detection of neurodegenerative disorders, particularly 
Alzheimer’s and Parkinson’s diseases. Sophisticated AI algorithms have 
been created to analyze MRI images and identify specific biomarkers or 
patterns associated with these conditions. AI’s ability to detect subtle 
changes in brain structure or function at the voxel level makes it an 
efficient tool for diagnosing these diseases and providing objective, 
quantitative assessments [62-64]. Additionally, AI has shown promise 
in predicting outcomes for brain and spine surgeries. By analyzing 
preoperative imaging data, AI models can provide prognostications 
about surgical outcomes, including the likelihood of complications and 
the extent of functional improvement.

Oncological imaging 

Progress in high-performance computing has led to significant 
advancements in oncology, specifically in cancer imaging, thanks to 
the development of AI and ML technologies. Through the integration 
of multi-omics data and the use of DL strategies, precision oncology 
has been able to make great strides in cancer diagnosis, prognosis, and 
treatment. The digital nature of oncological imaging makes it well-
suited for AI and ML applications, as the entire imaging process, from 
acquisition to interpretation, reporting, and communication, takes 
place within the digital space. This allows for efficient data capture and 
analysis using AI and ML. Consequently, these technologies are now 
being actively explored and implemented in cancer imaging, which 
is a major component of the workload in many healthcare facilities. 
AI is increasingly being used in tumor detection and classification, 
particularly in the diagnosis of breast, lung, and prostate cancers. AI-
based devices are already being utilized in clinical practice. Studies 
have shown that deep learning models and CNNs can accurately 
classify lung nodules on CT scans and differentiate subtypes of renal 
cell carcinoma on MRI, often matching or even surpassing the expertise 
of experienced radiologists. AI algorithms provide an objective and 
consistent way to assess changes in tumor size or metabolic activity, 
automating measurements that were previously time-consuming 
and prone to variability between observers, as seen in the Response 
Evaluation Criteria in Solid Tumors. AI achieves this by utilizing 
radiomic features—complex data obtained from radiological images—
to construct mathematical models proficient at detecting subtle changes 
suggestive of treatment response [65]. Additionally, AI plays a crucial 
role in monitoring treatment response by quantifying tumor changes 
through detailed analysis of medical image subunits (pixels/voxels). 
These smaller components can be examined by computers to reveal 
objective mathematical characteristics associated with disease behavior 
or outcomes. AI also obtains valuable predictive insights by analyzing 
radiomic signatures, such as texture analysis, to forecast survival rates in 
lung cancer patients based on pre-treatment CT images, while radiomic 
features derived from MRI scans have demonstrated a correlation with 
the risk of recurrence in patients with glioblastoma. Consequently, the 
incorporation of AI in radiology enables efficient and accurate tracking of 
tumor progression, significantly improving overall treatment evaluation 
and patient care. Traditional methods of monitoring radiation therapy 
response, which rely on manual assessment of changes in tumor size 
and characteristics, are often subjective and may fail to detect subtle 
indications of treatment effectiveness [66]. AI, specifically CNNs, offer 
an objective approach to assess treatment response, utilizing extensive 

automating triage and enhancing report generation [2]. It efficiently 
sorts and prioritizes radiological studies such as CT scans and MRIs 
based on urgency, highlighting critical cases that require immediate 
attention. This automated system helps consistently detect serious 
conditions like stroke, hemorrhage, and cancer, thereby reducing 
errors. The use of AI, particularly NLP, in non-interpretive tasks 
helps alleviate the monotonous aspects of the workflow, potentially 
mitigating radiologist burnout. Additionally, AI improves the creation 
and interpretation of radiology reports. DL algorithms address the 
shortcomings of traditional reporting, including errors caused by 
fatigue or inconsistencies due to varying levels of expertise [54]. These 
algorithms detect and characterize findings to enhance consistency, 
standardize report creation, and minimize errors. This additional layer 
of analysis streamlines the workflow and enhances the clarity of reports, 
making a significant contribution to the quality of radiology services.

The integration of AI surpasses the boundaries of purely diagnostic 
capabilities, greatly enhancing interdisciplinary collaboration and 
communication between patients and radiologists. AI platforms act 
as a crucial channel that fosters a shared understanding of imaging 
results among diverse healthcare professionals by simplifying complex 
medical terminologies for patients. This transparency helps establish a 
strong relationship between the patient and the radiologist, while also 
promoting greater patient involvement in their own healthcare. While 
progress is being made integrating AI into radiology, it is important to 
note that as of 2021, only 30% of radiologists reported using clinical AI, 
with more than 70% expressing hesitation to invest in AI. Many views AI 
as providing minimal advantages, suggesting that the field of radiology 
is currently in a phase of disappointment in the adoption of AI [56-
59]. This disappointment stems from factors such as doubt about AI 
performance and applicability, a perceived lack of necessity, inefficient 
workflows for AI utilization, and a lack of scalable infrastructure to 
support AI. In order to transition into a phase of enlightenment, the 
field must establish infrastructure that enables optimal AI functionality, 
which includes redefining and disrupting existing systems such as image 
management and Picture Archiving and Communication Systems for 
intelligent workflow coordination [65]. Despite the potential of AI, the 
importance of preserving the human element in patient care cannot 
be overstated. This emphasizes that while AI can enhance the work of 
radiologists, it cannot replace the nuanced judgment and empathetic 
communication that are essential in-patient care.

AI across medical specialties
Neuroradiology

ML, especially supervised techniques, and DL have become 
essential in handling complex data in the field of neuroradiology. This 
state-of-the-art technology has enabled the early identification of various 
types of strokes, as shown in multiple studies. CNNs exhibit exceptional 
proficiency in tasks such as detecting infarcts or hemorrhages, 
segmenting data, classifying strokes, and identifying occlusions in large 
blood vessels. The utilization of CNNs in these domains has greatly 
impacted stroke treatment approaches, as illustrated by the research 
conducted by Soun et al.

AI enhances clinical decision-making in situations characterized 
by significant variation between raters. Its applications range from 
categorizing different types of strokes and identifying bleeding in the 
brain to segmenting images and identifying blockages in large blood 
vessels. This advancement offers clear advantages for facilities that 
handle a small number of stroke patients or serve as regional centers. A 
growing body of research highlights the potential of AI in supporting 
decisions regarding the use of thrombolysis and thrombectomy [60, 
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The domain of gastrointestinal imaging has experienced 
unparalleled progress thanks to AI. AI has played a crucial role in 
enhancing the identification, diagnosis, and staging of liver and 
pancreatic diseases [72]. The creation of various predictive models based 
on AI has expanded the range of diagnoses, including gastrointestinal 
and inflammatory diseases, non-malignant conditions, and the 
detection of bowel bleeding using state-of-the-art technologies like 
wireless capsule endoscopy. Moreover, AI has proven to be invaluable in 
the identification of hepatic-associated fibrosis by utilizing EHRs to gain 
meaningful insights into patients’ health data and medical history [73]. 
Additionally, the fusion of AI with endoscopic ultrasound technology 
has significantly improved the speed and accuracy of diagnosing 
pancreatic carcinoma, thereby enhancing patient management 
strategies.

AI has revolutionized the way liver and pancreatic diseases are 
diagnosed in the fields of hepatology and pancreatology. The integration 
of AI with various imaging techniques has led to a significant shift in 
the diagnostic approach. Ultrasound, endoscopic ultrasonography, 
CT, MR, and PET/CT have all benefited from AI’s advancements. 
Additionally, AI plays a crucial role in helping doctors choose the most 
suitable diagnostic test for each patient based on their unique medical 
profile. Furthermore, AI is invaluable in improving image quality, 
speeding up image acquisition, and predicting patient prognosis and 
treatment response (Figure 5) [74].

AI has revolutionized the field of abdominal and pelvic imaging 
by providing precise and consistent diagnostic results. This technology 
enables automated or semi-automated identification and alignment of 
the liver and pancreatic glands, as well as their associated abnormalities, 
leading to improved accuracy in diagnosis and treatment. The 
integration of radiomics introduces new quantitative measures in 
radiology reports, which enhance the identification and characterization 
of localized lesions and widespread disorders in the liver and pancreas, 
ultimately leading to better clinical outcomes [2].

In the field of nephrology, advanced AI applications exhibit great 
potential in predicting the development of acute kidney injury even 
before significant biochemical changes occur. This early detection 
allows for timely intervention to prevent the progression of the disease 
[75]. Furthermore, AI’s capability to identify modifiable risk factors for 
the progression of chronic kidney disease provides valuable insights for 
preventive care.

As a result, AI models have demonstrated proficiency in interpreting 
imaging studies that match or even surpass human accuracy in the field 
of renal tumor detection. After renal transplantation, this impressive 
feat could enhance prognostication and decision-making processes 

datasets of annotated imaging scans to precisely identify and delineate 
tumors. This automation streamlines the planning process, potentially 
enhancing treatment outcomes through precise radiation dosage. The 
effectiveness of this approach is frequently measured by the Sørensen–
Dice coefficient, facilitating early and precise assessment of therapy 
efficacy and prompt treatment adjustments, if necessary (Figure 4).

Cardiovascular imaging

In recent years, there has been significant progress in cardiovascular 
imaging thanks to AI. This progress has allowed for better detection 
and measurement of heart diseases, thorough analysis of vascular 
abnormalities, and integration of various imaging data. AI algorithms 
efficiently interpret complex imaging data, identifying early stages of 
cardiac diseases like coronary artery disease and congestive heart 
failure using modalities such as cardiac CT, MRI, or echocardiography. 
For instance, ML models and CNNs have shown the ability to 
automatically detect calcification in coronary arteries and segment the 
left ventricular myocardium, respectively [67-70]. These automated 
processes have shown strong correlation with manual analyses. 
Furthermore, AI technology has improved the assessment of the left 
ventricle in echocardiographic diagnosis by automating tasks that 
were traditionally reliant on visual observation and manual boundary 
tracing. This includes measuring the left ventricular ejection fraction 
using the Simpson method. These advancements aim to reduce reliance 
on physician experience, thus enhancing the repeatability and accuracy 
of evaluations. In addition to cardiac conditions, AI is also valuable 
in analyzing vascular abnormalities such as aortic aneurysms and 
peripheral artery disease. This technology facilitates early intervention 
and potentially improves patient outcomes. CNNs have proven to be 
effective in evaluating abdominal aortic aneurysms from CT images, 
displaying high accuracy in detecting and sizing these life-threatening 
conditions. Moreover, AI-assisted standard section recognition has 
significantly reduced evaluation time, improved detection capabilities, 
and enhanced the accuracy of novice practitioners. These benefits are 
particularly valuable in settings with limited resources for training 
echocardiography physicians.

The fusion of data from multiple imaging techniques, including CT, 
MRI, and echocardiography, marks a significant advancement in AI-
based cardiovascular imaging [71]. This comprehensive data integration 
enables a comprehensive analysis of the structure and function of the 
heart, which is vital for intricate evaluations like identifying ischemia or 
preparing for medical procedures. An example of this integration is the 
utilization of machine learning algorithms to combine perfusion data 
from MRI and coronary anatomy from CT, resulting in the creation of 
advanced 3D models of the heart. This not only enhances the detection 
of cardiac ischemia but also aids in accurate procedural planning.

Abdominal imaging

Figure 4: Dr. Harmon’s AI model uses digital images of a bladder tumor tissue sample 
(“INPUT” on the left) to predict the risk of the cancer spreading to nearby lymph nodes 
(“OUTPUT” on the right). [66].

Figure 5: CT images of the chest and abdomen produced using low-dose AI reconstruction, 
low-dose conventional iterative reconstruction and normal-dose [74].
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This implies a significant investment in powerful and reliable hardware 
infrastructure to avoid any negative impact on patient care caused 
by system failures. Additionally, the software must be resilient, user-
friendly, and designed to seamlessly integrate into existing radiological 
systems [84]. This requires close collaboration between AI developers, 
radiologists, and other healthcare professionals. AI also offers the 
promise of reducing the administrative burden faced by radiologists, 
who currently spend approximately 16.6% of their working hours 
(roughly nine hours per week) on administrative tasks.

It is equally crucial to overcome the challenges of obtaining 
regulatory approval and maintaining ongoing monitoring. AI 
tools must undergo thorough validation to prove their safety and 
effectiveness before receiving regulatory approval. After approval, it 
is essential to continually monitor and evaluate their performance to 
ensure consistent improvement and reliable outcomes. Ultimately, the 
successful integration of AI in radiology depends on the acceptance and 
adoption by end-users, particularly radiologists [85]. This emphasizes 
the significance of offering adequate training and support to enable 
radiologists to utilize AI tools effectively and seamlessly incorporate 
them into their daily routine.

Ethics: conundrums and dilemmas

AI integration in radiology raises several ethical concerns, 
including issues with data privacy and security, patient confidentiality, 
informed consent, the risks of misdiagnosis, and the need to maintain 
human involvement in patient care.

The convergence of data privacy and security with AI revolves 
around how patient data is governed, especially in public-private 
partnerships with large tech companies. An examination of commercial 
healthcare AI has revealed that a significant portion of these technologies 
is controlled by private entities, causing concerns about potential 
misuse of data [86]. The DeepMind incident serves as a prime example, 
as it involved the transfer of patient data from the UK to the US without 
explicit patient consent. These incidents highlight the necessity for 
stricter regulatory oversight to ensure that patient data remains within 
its original jurisdiction and is protected against unauthorized access.

Patient privacy and consent, closely related to data protection, 
necessitate patients to have control over their data, understanding how 
it is used, the potential risks involved, and the benefits it may bring. 
This becomes particularly important in the context of AI-driven 
healthcare, where the opaqueness of learning algorithms can obscure 
the decision-making processes. Therefore, it is crucial to establish 
necessary measures and transparent procedures to ensure privacy and 
protect patient autonomy.

Moreover, the ethical concerns surrounding AI-assisted radiology 
include the possibility of misdiagnosis, liability, and accountability. 
While AI shows promise in providing diagnostic capabilities, it is also 
prone to errors and biases that can result in incorrect diagnoses and 
harm to patients [87, 88]. Addressing this issue requires the formulation 
and implementation of clear guidelines and policies for the use of AI in 
medical settings, with a focus on holding decision-makers accountable 
and defining the responsibilities of healthcare professionals and AI 
systems.

Furthermore, the ethical issues surrounding AI-supported 
radiology encompass the potential for misdiagnosis, legal responsibility, 
and answerability. Despite the potential for AI to offer diagnostic 
capabilities, it is also susceptible to mistakes and prejudices that can 
lead to incorrect diagnoses and harm to patients. Addressing this matter 
necessitates the development and implementation of clear guidelines 
and policies for the utilization of AI in medical environments, with an 

[76]. As renal tumors are more precisely detected and diagnosed, 
treatment strategies become more effective, potentially leading to better 
patient outcomes.

Limitations and Future Directions
The rise of AI in the healthcare industry, specifically in diagnostic 

radiology, has opened up new possibilities to improve the level and 
effectiveness of patient treatment. However, along with this rapid 
development, there are numerous obstacles that need to be overcome. 
These challenges include the need for sufficient and accurate data, the 
complex nature of AI algorithms, integration into medical practices, 
and ethical concerns [77]. This section will explore these issues in 
detail and suggest potential solutions to promote the integration and 
responsible application of AI in radiology, taking into account technical, 
infrastructural, regulatory, and human factors.

The “black box” problem and data quality

The effectiveness of AI algorithms, which essentially mirror reality 
through mathematical calculations, relies not just on the quality and 
accuracy of their training data, but also on the appropriate interpretation 
of medical images based on comprehensive datasets that accurately 
capture the diversity of patient demographics, including age, gender, 
ethnicity, and disease progression [78].

However, the creation of such datasets is often hindered by biases 
caused by the limited inclusion of certain demographic groups or 
specific clinical contexts. To address this issue, techniques such as data 
augmentation, oversampling, and under sampling are commonly used 
to mitigate data scarcity, ensuring that the training dataset is diverse 
and represents a balanced view of the subject matter.

Recognizing and addressing potential risks related to biased 
or non-representative data is crucial. Failure to manage these risks 
adequately can unintentionally perpetuate health disparities and result 
in AI models that perform poorly for certain patient groups. The issue of 
“black box” in AI, which refers to the lack of transparency in AI models, 
makes it difficult to detect errors and identify biases, thereby negatively 
impacting underrepresented communities and the effectiveness of 
clinical applications [79-81]. Overcoming these challenges requires 
a collaborative effort to diversify data collection, address bias in AI 
system design, analyze performance based on population subgroups, 
and utilize representative samples for clinical validation.

In addition to these approaches, explainable AI is an emerging field 
that aims to demystify AI decision-making processes by improving the 
reliability of inferences and enhancing transparency and interpretability. 
Explainable AI techniques, such as saliency maps, feature importance, 
and surrogate models, help visualize and explain the reasoning behind 
AI models’ decisions, making them understandable to both experts and 
non-experts.

Incorporating AI into radiology practice

The inclusion of AI in clinical radiology has received mixed 
responses, requiring a clear plan to address the various challenges 
that emerge. Key among these is the need for strong hardware and 
dependable software, crucial for managing the large amount of data 
produced by medical imaging systems [83]. AI-powered applications 
can tap into the untapped potential of around 97% of unused hospital 
data, greatly enhancing the prediction of disease progression and the 
adjustment of treatment plans.

Implementing AI effectively necessitates high-performance 
hardware capable of carrying out complex calculations in real time. 
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of fresh expertise. Given that AI algorithms can handle vast amounts 
of data surpassing human capabilities, the importance of memorizing 
extensive medical knowledge or honing procedural abilities through 
repetitive practice might decrease [93]. This transition necessitates 
clinicians to gain additional proficiencies, including data science, 
statistics, and AI ethics, which will play a vital role in interacting with 
AI technologies securely and efficiently. These proficiencies will enable 
clinicians to proficiently input data, analyze algorithmic results, and 
effectively communicate AI-generated treatment strategies to patients.

Given the changing landscape, radiologists may have to go beyond 
just interpreting images and take on a wider range of responsibilities 
related to AI technologies. Their focus may shift from solely interpreting 
images to tasks like developing, validating, and monitoring AI models 
[94, 95]. An important aspect of AI in radiology involves the labeling 
of images, a process that requires the expertise of radiologists but is 
labor-intensive and expensive. As AI technologies progress, radiologists 
will increasingly work with decision support systems that can provide 
suggestions for diagnoses, alert test results, and even automate clinical 
documentation.

The professional growth of radiologists may also align with 
significant advancements in radiomics and pathomics, enabling the 
integration of diagnostic services and personalized medicine. This is 
particularly crucial in settings with limited resources and infrastructure, 
where the adoption of AI might present challenges [2, 96].

RANZCR has taken a forward-thinking stance towards these 
obstacles and possibilities. In their updated curriculum for 2023, 
they have integrated subjects related to AI, showcasing the increasing 
acknowledgement of AI’s significance in radiology and the necessity for 
radiologists to develop new skills [97-99]. This pivotal integration of 
AI guarantees that RANZCR stays ahead in terms of technology and 
innovative solutions, affirming its dedication to providing radiologists 
with the latest tools and expertise in the ever-changing realm of medical 
imaging.

Conclusion
This review concludes by summarizing the main insights, 

transformative possibilities, and future direction of the complex 
relationship between AI and medical imaging. With AI playing a 
crucial role in modern radiology, it offers numerous benefits such 
as enhanced accuracy in diagnosis, more efficient workflows, and 
personalized care for patients. These advancements, which include tools 
for segmenting and categorizing images, computer-assisted diagnosis, 
and innovative diagnostic and prognostic tools driven by radiomics 
and predictive analytics, indicate a promising potential for improving 
patient outcomes. However, there are still challenges to be addressed 
regarding the privacy and security of data, as well as the opaque nature 
of AI models. Despite these obstacles, the future looks promising with 
the development of new algorithms and architectures that expand the 
scope of medical image analysis. It is essential to foster interdisciplinary 
research and bridge the gap between academia and industry by 
promoting collaboration between radiologists and AI developers. This 
collaboration should also extend to preparing healthcare professionals 
for an AI-driven landscape and redefining the role of radiologists in the 
era of AI. Embracing the potential of AI in shaping radiology requires 
not only a commitment to innovation and the development of advanced 
algorithms but also nurturing collaborations among radiologists, AI 
developers, patients, and policymakers. These joint efforts should aim 

emphasis on holding decision-makers accountable and defining the 
obligations of healthcare professionals and AI systems.

Having said that, the danger of excessive reliance on AI underscores 
the significance of upholding the human factor in patient care. While 
AI can enhance healthcare delivery and complement the expertise 
of healthcare professionals, it should not overshadow the invaluable 
knowledge and nuanced decision-making inherent in the practice 
of medicine, particularly considering the intricacy and variability of 
individual cases [89]. As the role of AI in radiology continues to evolve, 
these moral considerations must remain prominent in discussions, 
policy development, and research, ensuring the responsible and fair 
application of this transformative technology in healthcare.

Collaboration between radiologists and AI developers

The convergence of AI and radiology demands a collaborative 
partnership between radiologists and AI experts to establish cutting-
edge solutions that promote medical progress and enhance patient well-
being. This section explores the amalgamation of these distinct domains 
and the significance of interdisciplinary cooperation, its advantages, 
and approaches to bridging the divide between academia and industry.

Radiologists contribute a profound comprehension of clinical 
requirements, disease mechanisms, and nuances in interpreting medical 
images, while AI experts possess the technical proficiency to devise, 
implement, and optimize ML algorithms. This diverse range of expertise 
is not only complementary but also indispensable for the development 
of AI tools that are both feasible and effective in a clinical setting [90]. 
The absence of input from radiologists may result in AI tools being 
designed without factoring in real-world clinical workflows, thereby 
restricting their usefulness, or posing potential risks to patient safety. 
Conversely, without the technical prowess of AI experts, radiologists 
would encounter challenges in harnessing the immense potential of AI 
for analyzing medical images.

Combining different areas of expertise is essential for successful 
research. When radiologists and AI developers work together, they can 
create AI tools that better meet the needs of patients and healthcare 
professionals [91]. This collaboration also fosters a shared sense of 
accountability, leading to improved adoption and optimization of AI 
tools in clinical environments. One effective approach for promoting 
collaboration is the Academia-Industry Collaboration Plan, which 
establishes guidelines for partnerships between academic institutions 
and industry. This is particularly important because universities 
contribute skilled professionals and new concepts, while the industry 
offers the financial resources needed for research and innovation.

Nonetheless, the collaboration between academia and industry 
encounters obstacles. A major challenge that can impede innovation 
and hinder the implementation of AI tools in radiology is the existing 
divide between these two sectors. While academia primarily focuses 
on theory and exploration, industry prioritizes practical applications 
and market viability [92]. However, there are various approaches that 
can be utilized to overcome this hurdle. To begin with, collaborative 
projects involving both academic and industry partners can facilitate 
the exchange of ideas and resources, resulting in inventive and reliable 
AI solutions. The utilization of shared datasets enables a wider range of 
research, thereby improving the applicability of AI tools. Lastly, open-
source software provides a platform for cooperation, thereby promoting 
transparency and reproducibility, which are essential for scientific 
advancement.

Training in healthcare

The integration of AI into medical practice requires the acquisition 



Pages: 10-12Prensa Med Argent, Volume 110:1

Citation: Iffath T, Athkuri P, Salfi MN, Goyal P (2023) Redefining Radiology - Artificial Intelligence Integration in Medical Imaging. Prensa Med Argent, 
Volume 110:1.410. DOI: https://doi.org/10.47275/0032-745X-410

18. von Ende E, Ryan S, Crain MA, Makary MS (2023) Artificial intelligence, augment-
ed reality, and virtual reality advances and applications in interventional radiology. 
Diagnostics 13: 892 https://doi.org/10.3390/diagnostics13050892

19. Mun SK, Wong KH, Lo SC, Li Y, Bayarsaikhan S (2021) Artificial intelligence for 
the future radiology diagnostic service. Front Mol Biosci 7: 614258. https://doi.
org/10.3389/fmolb.2020.614258 

20. Dikici E, Bigelow M, Prevedello LM, White RD, Erdal BS (2020) Integrating AI 
into radiology workflow: Levels of research, production, and feedback maturity. J 
Med Imaging 7: 016502.  

21. Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MS, et al. (2021) Artificial in-
telligence techniques: analysis, application, and outcome in dentistry-a systematic 
review. BioMed Res Int 2021: 9751564. https://doi.org/10.1155/2021/9751564

22. Buchanan BG, Shortliffe EH (1984) Rule based expert systems: the mycin experi-
ments of the stanford heuristic programming project (the Addison-Wesley series in 
artificial intelligence). Addison-Wesley Longman Publishing Co. Inc. 

23. Shortliffe E (2012) Computer-based medical consultations: MYCIN. Elsevier.

24. Quinlan JR (1986) Induction of decision trees. Mach Learn 81-106. https://doi.
org/10.1007/BF00116251 

25. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 273-297. https://
doi.org/10.1007/BF00994018

26. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by 
back-propagating errors. Nature 323: 533-536. https://doi.org/10.1038/323533a0   

27. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521: 436-444.  

28. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with 
deep convolutional neural networks. Commun ACM 60: 84-90. https://doi.
org/10.1145/3065386 

29. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, et al. (2015) Imagenet large 
scale visual recognition challenge. Int J Comput Vis 115: 211-252. https://doi.
org/10.1007/s11263-015-0816-y 

30. Thrall JH, Li X, Li Q, Cruz C, Do S, et al. (2018)  Artificial intelligence and machine 
learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J 
Am Coll Radiol 15: 504-508.  https://doi.org/10.1016/j.jacr.2017.12.026

31. Rimmer A (2017) Radiologist shortage leaves patient care at risk, warns royal col-
lege. BMJ: British Med J 359. https://doi.org/10.1136/bmj.j4683

32. Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, et al. (2019) As-
sessing radiology research on artificial intelligence: a brief guide for authors, re-
viewers, and readers—from the Radiology Editorial Board. Radiology 294: 487-
489. https://doi.org/10.1148/radiol.2019192515

33. Kahn CE (2019) Artificial intelligence, real radiology. Radiol Artif Intell 1: e184001. 
https://doi.org/10.1148/ryai.2019184001

34. dos Santos DP, Dietzel M, Baessler B (2021) A decade of radiomics research: are 
images really data or just patterns in the noise? Eur Radiol 31: 1-4. https://doi.
org/10.1007/s00330-020-07108-w

35. Muehlematter UJ, Daniore P, Vokinger KN (2021) Approval of artificial intelligence 
and machine learning-based medical devices in the USA and Europe (2015-20): 
a comparative analysis. Lancet Digit Heal 3: e195-e203. https://doi.org/10.1016/
s2589-7500(20)30292-2

36. Keane PA, Topol EJ (2018) With an eye to AI and autonomous diagnosis. NPJ Digit 
Med 1: 40. https://doi.org/10.1038/s41746-018-0048-y

37. Wang X, Liang G, Zhang Y (2020) Inconsistent performance of deep learning 
models on mammogram classification. J Am Coll Radiol 17: 796-803. https://doi.
org/10.1016/j.jacr.2020.01.006

38. Jacobson FL, Krupinski EA (2021) Clinical validation is the key to adopting 
AI in clinical practice. Radiol Artif Intell 3: e210104. https://doi.org/10.1148/
ryai.2021210104

39. Mongan J, Kalpathy-Cramer J, Flanders A, Linguraru MG (2021) RSNA-MICCAI 
panel discussion: machine learning for radiology from challenges to clinical applica-
tions. Radiol Artif Intell 3: e210118. https://doi.org/10.1148/ryai.2021210118

40. Kelly B, Judge C, Bollard SM, Clifford SM, Healy GM, et al. (2020) Radiology arti-
ficial intelligence, a systematic evaluation of methods (RAISE): a systematic review 
protocol. Insights Imaging 11: 1-6. https://doi.org/10.1186/s13244-020-00929-9

41. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for bio-
medical image segmentation. In Medical Image Computing and Computer-Assisted 
Intervention, Munich, Germany.  

to meet the clinical needs, translate research into practical applications, 
and ensure the ethical deployment of AI, always prioritizing the safety, 
privacy, and dignity of patients. In this context, the upcoming era of 
AI in radiology, though challenging, reveals its immense potential in 
transforming healthcare.
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