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Abstract

The term artificial intelligence (AI) refers to a collection of techniques designed to mimic human intelligence in some way. Gastroenterology is not an exception,
as imaging is used for diagnostic purposes in various medical specialties. A number of applications of Al are available here, including the detection of polyps, the
identification of their malignancy, the diagnosis of Helicobacter pylori infection, gastritis, inflammatory bowel disease, gastric cancer, esophageal neoplasms, and
pancreatic and hepatic cancers. This review will discuss the main applications of artificial intelligence in hepatology and gastroenterology, as well as their limitations.
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Introduction

In medicine, Al refers to the development of computers that can
perform tasks requiring human intelligence. A great deal has been
accomplished in the field of Al since it was first developed in the 1950s.
Al is often referred to as machine learning (ML) or deep learning (DL),
which refers to techniques within AI that enable computers to learn
and adapt without explicit instructions. The goal of ML is to predict
outcomes based on data using self-learning algorithms. Learning is
either supervised or unsupervised within ML. A supervised learning
algorithm learns from a dataset in which a hierarchy of features has
previously been assigned so that it can distinguish between different
data inputs and predict outcomes. Unsupervised learning uses datasets
that have not been categorized by humans. After analyzing the data, the
algorithm identifies patterns and labels [1].

Artificial neural networks (ANNs) can be taught using both
supervised and unsupervised techniques. Node units, which are
organized in successive layers, are part of ANNs, a category of ML
algorithms. ANNs are based on the neural network concept. Similarly
to neurons, artificial neurons (nodes) are capable of transmitting signals
through dendrites and axons. ANNs, unlike biological ones, can receive
other forms of signals besides activation signals, which is what makes
them different from each other [2].

A deep neural network (DNN) is an ANN composed of multiple
layers, and DL is the process of utilizing such a system. A DNN’s first
layer represents input information, and its last layer represents output
information. Hidden layers are those between input and output. By
layering simple data with complex information, the system is able to
make complex decisions [3].
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The representation learning capability of deep learning allows it to
change the frameworks in each layer, thereby providing better results.
Transfer learning is one of the major advantages of this system. For
example, a model trained for one task may be used for another task
once it has learned the characteristics of the image. It is predicted
that AI will be an increasingly important technology in some medical
specialties, particularly those that require interpretation of images,
like dermatology, gastroenterology, radiology, and pathology. Using
Al in gastroenterology is the purpose of this mini review. A number
of AI applications in endoscopy are being developed, including the
identification, classification, and assessment of colorectal polyps,
wireless capsule endoscopy (WCE), the evaluation of esogastric
pathology using upper endoscopy, and the analysis of ultrasound images
obtained by endoscopic ultrasound. In gastrointestinal endoscopy, Al
can improve diagnosis and treatment [4].

Colorectal Polyps

Colorectal polyps are growths on the lining of the colon or rectum.
There is a high probability of benign polyps developing in the colon and
rectum. The results indicate that they are not cancerous. Depending on
how many polyps you have, you may have one or more. The prevalence
of these diseases increases with age. The polyps come in a variety of
forms. The most common type of polyp is an adenomatous polyp. This
is a type of growth that develops on the mucous membrane that lines
the large intestine. It is commonly one of these types of tumors that is
called an adenoma: (i) Tubular polyp, which protrudes out in the lumen
(open space) of the colon and (ii) Villous adenoma, which is sometimes
flat and spreading, and is more likely to become a cancer.

People with polyps may also have some inherited disorders, such as:
Familial adenomatous polyposis, Gardner syndrome (a type of Familial
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adenomatous polyposis), Juvenile polyposis, a disease that causes many
benign growths in the intestine before 20 years old, In addition to
Lynch syndrome, hereditary non-polyposis colorectal cancer increases
the risk of many types of cancer, including intestine cancer and Puisz-
Jeghers syndrome (a disease that results in intestinal polyps, usually of
the small intestine, which are usually benign) [5].

Detection of polyps

CADe (computer-aided polyp detection) and CADx (computer-
aided polyp diagnosis) are two implementations of Al for colonoscopy.
Intensive research has been conducted on both of these techniques.

The rate of missed polyps during colonoscopy might be as high
as 25%, including preparation of the bowel, the rate of adenoma
detection rate (ADR), and even fatigue. In this study, Fernandez et al.
[10] investigated the capability of an automatic method based on the
creation of energy maps for detecting colonic polyps. This technique
was 72.4% specific and 70.4% sensitive, even though only 24 videos
containing polyps were analyzed. Furthermore, authors like Wang et
al. [11] recently conducted a prospective randomized controlled study
to investigate the effect of an automatic polyp detection system. Study
participants were randomized to receive standard colonoscopies or
computer-aided diagnoses. A higher incidence of small adenomas that
could be detected by the AI system led to a notably increased ADR and
mean number of adenomas per patient (Figure 1) [6].

(b)

Figurel: Automated polyp detection. In this practical application of Al in gastrointestinal
endoscopy [6].

An overview of polyp classification

In spite of the fact that polyps are small, it is important to classify
them. Depending on the situation, an endoscopist can either remove
them or leave them in place. An enhanced imaging technique is needed
for a close-up analysis of the polyps to be able to make these decisions.
Polyps are classified into malignant or nonmalignant according to
their malignantness [7-11]. The shape, texture, and color of polyps
are considered by Al to make this differentiation. The classification of
polyps can be accomplished using chromoendoscopy, narrow-band
imaging, endocytoscopy, laser-induced autofluorescence, and confocal
endomicroscopy.

To predict the histology of colorectal tumors using narrow-band
imaging magnifying colonoscopy, Takemura and his co-authors [12]
examined narrow-band imaging magnifying colonoscopy. In spite of
the learning curve in the NBI classification system, and even though
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the study was conducted in only one center, the system was nearly
97.8% accurate. In contrast, endocytoscopy uses mini probes to provide
microscopic visualization. An automated system could be used to
diagnose small and diminutive polyps using endocytoscopic imaging
[12-15]. According to their results, the system is 89% accurate when
dealing with diminutive and small polyps.

Colonic dysplasia can be detected in vivo using laser-induced
autofluorescence. In WavSTAT, laser light is absorbed by tissue through
laser-induced autofluorescence spectroscopy, which is incorporated
into biopsy forceps. Optical fingerprints are created by analyzing the
light that is emitted by the tissue. The purpose of chromoendoscopy
is to enhance the appearance of tissue by applying topical dyes. A
combination of this technique and another technique, such as NBI, is
often used.

Endoscopists can visualize epithelial tissue during endoscopy with
probe-based confocal laser endomicroscopy. The performance of an
automatic software with an off-line method used by expert endoscopists
to support probe-based confocal laser endomicroscopy. Based on their
findings, both techniques are highly sensitive and specific [16].

H. pylori diagnosis

Gastric cancer is frequently caused by H. pylori. Gastric cancer
screening in Asia involves diagnosing H. pylori in Asia involves
assessing the mucosa for H. pylori. Since this process is time-consuming
and involves a steep learning curve, AI might be useful for improving
diagnostic performance [17, 18].

A method for detecting H. Pylori was developed by Dr. Sebastian
and his colleagues using specific stained gastric biopsies. Based on
Giemsa-stained biopsies from 87 cases, the algorithm had 100%
sensitivity.

Malignant polyps: detection and treatment

Diagnosing malignancy in polyps is very important because making
the right diagnosis guides the optimal treatment for the patients. If deep
submucosal invasion is present, surgery is required because there is a
high risk of possible metastasis to the lymph nodes. Taking this into
consideration, proper endoscopic diagnostic tools should be used in
order to be able to use the right therapeutic options [19-22].

Endoscopic treatment consists of endoscopic mucosal resection,
endoscopic submucosal dissection, or endoscopic full-thickness
resection. Currently, several endoscopic techniques are available to
assess the depth of invasion. Those are NBI, high-definition white light
endoscopy, and EUS. Recently, another CAD system for assessing the
grade of invasion, which uses ultra-high magnification endocytoscopy.
They concluded that this system might be a helpful diagnosing tool in
the future, having both high sensitivity and specificity of 98.1% and
100% [23].

Gastritis

Among the most common diseases is chronic gastritis.
Inflammation levels, intestinal metaplasia and atrophy are all evaluated
during diagnosis, as is H. pylori contamination. Convolutional neural
networks (CNNs) were used in the study. In order to classify gastritis
properly (autoimmune, bacterial, and chemical), the capacity of this
network was evaluated. 84 percent of the tests were accurate [2, 24. 25].

Gastric cancer

Early detection and proper characterization of gastric lesions are
as important as colorectal lesions for establishing optimal treatment
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options. Chronic gastritis and polyps are gastric lesions that can
be premalignant. A number of studies have examined algorithms
developed to detect premalignant gastric conditions.

In a recent study, CNN system had an overall sensitivity of 92.2%
when diagnosing gastric cancer lesions. Gastric cancer invasion grade
using an AI CNN system. Using this system, expert endoscopists were
able to differentiate between early gastric cancer and deep submucosal
invasion to the extent of 76.47% and 95.56%, higher than those achieved
with standard systems by expert endoscopists [5, 26-32].

Inflammatory bowel disease

It is the histologic healing of the mucosa that matters most when it
comes to inflammatory bowel disease. Patients who suffer from a type
of disease that evolves over several years are more likely to experience
disease exacerbation and dysplasia when histologic inflammation
is still present. Using images from colonoscopies of patients with
ulcerative colitis, the accuracy of a CAD system. Based on the results,
they concluded that the system was capable of identifying persistent
histologic inflammation with 74% sensitivity and 97% specificity [33].

Another DNN system uses colonoscopy images from ulcerative
colitis patients. Eight hundred and seventy-five ulcerative colitis
patients underwent colonoscopies to test the system’s accuracy.
Histologic remission was 92.9% accurate, and endoscopic remission
was nearly 90.1% accurate. Using images from capsule endoscopy, Eyal
along with his co-authors used a DL algorithm to automatically detect
ulcers located in the small intestine in patients with Chron’s disease. In
order to identify normal mucosa or mucosal ulcers from image data
from the mucosa, a convolutional neural network was trained. Between
95.4% and 96.7% of predictions were accurate [34, 35].

Esophageal neoplasia

Cancer of the esophagus is one of the most aggressive types of
cancer. Squamous cell carcinoma and adenocarcinoma are the most
common histological types. Histopathological response and overall
survival rate are positively correlated with localized esophageal cancer
treated with chemotherapy.

As a potential premalignant condition, Barrett’s esophagus is one
of the most common esophageal lesions [36]. As dysplasia progresses,
the risk of Barrett’s esophagus increases. Therefore, early detection
plays a significant role in improving prognosis. Barrett’s esophagus is
nowadays diagnosed by histopathology, which has limitations when it
comes to interobserver agreement, but is still the gold standard. Recent
developments have enabled CAD studies based on image analysis to
overcome this limitation [37].

A DL model was developed to aid in improving the diagnosis
of dysplastic lesions. The study included slides from 542 patients
and classified them into three categories: nondysplastic, low-grade
dysplasia, and high-grade dysplasia. Based on images, the model was
trained and validated to identify low-grade dysplasia with an 81.3%
sensitivity and 100% specificity, and nondysplastic Barrett esophagus
with >90% sensitivity and specificity. A CNN was also used to detect
esophageal cancer early at the Cancer Institute in Japan. With this
system, superficial esophageal cancer could be distinguished from
advanced esophageal cancer with 98% accuracy [2, 5, 38].

In order to detect neoplasia in Barrett’s esophagus, developed
a hybrid ResNet-UNet model. By using CAD, the system was able to
differentiate between nondysplastic Barrett’s esophagus and neoplastic
Barrett’s esophagus. Specifically, it had a sensitivity of 90%, an accuracy
of 89%, and a specificity of 88%. Computerized morphometry is another
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tool used to determine the degree of dysplasia in Barrett’s esophagus.
As part of a study, a number of indices of epithelial nuclei were
measured, such as size, shape, texture, architectural distribution, and
symmetry. Therefore, this study proposes computerized morphometry
as a sustainable method for assessing dysplasia and predicting
adenocarcinomas. An esophagus layer scan using volumetric laser
endomicroscopy can provide a high-resolution image of the esophagus’
layers. However, its limitations regarding the amount of data needed
for real-time interpretation have made its use difficult despite its high
potential to improve dysplasia diagnosis in Barrett’s esophagus [39-44].
A clinical volumetric laser endomicroscopy prediction score was used
as an input to Swager et al. [29] algorithm to overcome this limitation.
Endoscopists could benefit from an algorithm that detects early
neoplasia with 90% sensitivity and 93% specificity.

Endoscopic Ultrasound (EUS)

An EUS examination is particularly useful when diagnosing
pancreatic lesions and differentiating them from chronic pancreatitis.
The number of studies on DL systems is limited at the moment due to
limited resources [45].

Among 262 patients with chronic pancreatitis and pancreatic
cancer, Zhu and his team conducted a study. The texture characteristics
of specific regions of interest were selected using computer-based
techniques. Based on the EUS images, 105 characteristics were
extracted, and nine categories were identified. In general, the accuracy
of the system was 94.2%, sensitivity was 96.25%, and specificity was
93.38% [22, 46].

Das and her colleagues [23] developed a model that can distinguish
chronic pancreatitis from pancreatic cancer using digital image analysis
on EUS images. Among three groups of patients, the analysis was
conducted. There were three groups: one with normal pancreas, one
with chronic pancreatitis, and one with pancreatic adenocarcinoma.
The study concluded that direct image analysis of EUS images is highly
accurate in distinguishing between the three entities, despite having
a small number of patients (110 in the normal pancreas group, 99 in
the chronic pancreatitis group, and 110 in the adenocarcinoma group)
(Figure 2) [5, 47-52].

Endoscopic ultrasound (EUS)

Echoendoscope

Ultrasound
transducer

Figure 2: EUS.

Differentiating between chronic pancreatitis and autoimmune
pancreatitis is an important consideration. According to Dr. Zhu [22]
study, 181 cases of chronic pancreatitis and 81 cases of autoimmune
pancreatitis were investigated. Their findings suggest that textural
feature CAD might be useful in detecting chronic pancreatitis versus
autoimmune pancreatitis when local ternary pattern variance is present.

WCE
With WCE, the small bowel can be visualized by the physician.
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While WCE is useful for diagnosing multiple abnormalities, including
mucosal pathology, bleeding, or polyps, it does have some limitations.
A classic evaluation requires the analysis of nearly 60,000 images and up
to 8 hours of video [52, 53].

Based on these limitations, Zheng et al. [54] found that endoscopist
experience does not affect the detection rate of abnormalities in a classic
WCE evaluation. It is possible to remove image frames that provide no
information to the reader with the software that is used with WCE, as
well as to improve the reader’s efficiency by using color to locate frames
containing blood. Each time a new application for WCE appears, a new
CAD system must be designed, which is one limitation of CAD systems
used with WCE. A system that uses CNN to predict six intestinal motility
events with almost 96% accuracy [54]. With WCE, you can create
databases to serve the development of future CAD systems utilizing the
large number of images it provides. An analysis of small bowel WCE
videos was carried out retrospectively by 12 French endoscopy centers.
The researchers extracted pathological findings from 4174 videos [55].

An automatic bleeding detection system based on a CNN can
detect gastrointestinal bleeding. A 99.9% precision value was found
with their method after analyzing 10,000 WCE images. An innovative
learning method for polyp detection was proposed. They categorized
images based on similar features, according to the theory that similar
images should belong to the same category [56]. Overall, the method
was 98% accurate for polyps, bubbles, turbid images, and clear images.
CAD systems using CNNs were tested for detecting angiectasia, the
most common small bowel lesion. For algorithm testing and ML, two
datasets of still frames were created. Erosion, ulcer, and hookworm
detection systems were also reported to be comparable to direct
learning systems (Table 1).

Radiology

Since AI is highly applicable to a wide range of pathologies, it
has become an essential part of radiology diagnostic and therapeutic
procedures.

In addition to computed tomography (CT), magnetic resonance
imaging (MRI), and ultrasound (US), ML prototypes have been used to
process a wide range of images. Recent interest has been generated by
radiomimicry, a term first described in 2012, because it can reveal the
correlation between biological processes and technology [57, 58].

Table 1: Endoscopic procedures using CAD and Al [2].

Diagnosis of H. pylori

Inflammatory gastric disease (autoimmune, bacterial, and chemical
Upper digestive chronic gastritis)

tract endoscopy

Gastric cancer

Esophageal cancer and premalignant conditions (Barret’s esoph-
agus)

Polyp detection

Lower digestive Polyps’ classification

tract endoscopy

Detection of malignancy in polyps

Inflammatory bowel disease (ulcerative colitis and Chron’s
disease)

Angiectasia

Polyps

WCE
Erosions/ulcers

Hookworms

Chronic pancreatitis

Endoscopic ultra- | Pancreatic cancer
sound

Autoimmune pancreatitis
EUS Electrography
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Al in Radiology - Applications in Gastrointestinal
Pathology

Pancreatic disease

AT has been used to investigate a variety of pancreatic diseases,
including acute pancreatitis, chronic pancreatitis, pancreatic cystic
neoplasms, and pancreatic ductal adenocarcinomas. Prognostic models
and scores for acute and chronic pancreatitis were improved with the
use of AI [59-63]. Using Al, pancreatic cystic neoplasms were detected,
differentiated, and predicted for their malignant potential. In order to
differentiate between benign and malignant conditions, AI was used to
evaluate pancreatic ductal adenocarcinoma. Furthermore, Al can be
used to interpret tissue samples.

Due to the fact that pancreatic cancer is the seventh leading cause
of death worldwide, and a five-year survival period is dependent on
how large the lesion is, it is necessary to use proper diagnostic tools
to identify patients at high risk and to provide early detection. Several
algorithms were compared for predicting pancreatic cancer risk.
LYVEI1, REG1B, and TFF1 urine biomarkers were examined in their
study of 379 patients. Pancreatic cancer risk can be stratified using a
biomarker-based risk score [64].

Screening for pancreatic cancer with CT is commonly done,
however its sensitivity is low, especially for small lesions. A CT scanning
model to overcome this issue and detect pancreatic cancer at an early
stage. It achieved a specificity of 90.2% and a sensitivity of 80.2% for
314 normal scans and 136 pancreatic ductal adenocarcinoma cases.
Pancreatic cancer can be diagnosed more accurately with EUS. A CAD
system using EUS images was developed for the diagnosis of pancreatic
cancer. A total of 202 EUS images from pancreatic cancer patients were
extracted, as well as 130 images from non-cancer patients. A sensitivity
of 83.3% and a specificity of 93.3% were achieved by their system [2,
65].

Another system that uses endoscopic ultrasound imaging for real-
time CAD of pancreatic masses. In their system, CNNs were combined
with long short-term memory neural networks. A total of 65 patients
with focal pancreatic masses were included in the study, and 20 images
were selected from those patients. 98.26% of the model’s predictions
were accurate. The severity of acute pancreatitis determines the outcome.
A rapid and appropriate risk classification is essential for establishing
the proper treatment and monitoring of acute pancreatitis. In a study,
ANN' s were used to develop a system that can predict acute pancreatitis
severity. According to the Atlanta criteria, severe pancreatitis was
defined in their study as 208 patients. Alanine aminotransferase, heart
rate, hemoglobin levels, creatinine, hemoglobin levels, and white blood
cell count were selected as risk variables. A 50% sensitivity level was
reached by the system [66].

Cystic neoplasms of the pancreas are also important pancreatic
lesions. Detecting them and using proper curative treatment is possible
due to their slow progression to invasive carcinoma. There are currently
limited technologies available for determining cancer risk [67].
Intrapapillary mucinous neoplasms (IPMNs) were predicted from CT
scans of pancreatic cysts and parenchyma regions in 103 patients. After
resection, IPMNs were classified as low or high risk. An area under the
curve of 0.81 was obtained using tenfold cross-validation combined
with clinical variables [68-70].

Liver disease

In addition to liver cancer, hepatitis, and alcohol-induced cirrhosis,
metabolic syndrome is causing a continuous growth curve. Liver cancer
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makes up the third highest cause of cancer deaths, according to a 2022
article about global cancer incidence. It is therefore imperative that
proper diagnostic tools that provide early detection of cancer as well
as proper staging tools be used in order to provide effective treatment
for cancer [71]. There are many liver diseases that affect the liver, such
as hepatocellular carcinoma, nonalcoholic fatty liver disease, benign
tumors, viral hepatitis, chronic liver disease, and primary sclerosing
cholangitis. A combination of AI and abdominal US can be used to
assess diffuse liver disease as well as focal liver lesions. Fibrosis and
NAFLD are currently diagnosed with liver biopsy, the gold standard.
In spite of its high sensitivity and specificity, hemorrhage, peritonitis,
and pneumothorax are some of the complications associated with this
procedure [2, 72-74]. Thus, potential diagnostic techniques are needed
in the future.

In a CAD system, an ultrasound shear-wave elastography tool
for analyzing and categorizing chronic liver disease. They analyzed
85 images, including 54 healthy subjects and 31 chronic liver disease
patients. Based on this model, the accuracy was 87%, while sensitivity
and specificity were high at 83.3% and 89.1%, respectively [75]. In
order to detect and characterize mass lesions simultaneously using DL
developed an algorithm. Three hundred and sixty-seven ultrasound
images were used from three hundred and sixty-seven individuals. Tests
were conducted on 177 subjects with the algorithm accompanied by
annotations from a radiologist. Lesion discernment and characterization
achieved high receiver operating characteristic curves of 0.93 and 0.916,
respectively. As part of their study, used the DL method in conjunction
with a CNN to distinguish between liver masses at CT. These images
were acquired at three different phases: non-contrast-agent enhanced,
arterial, and delayed. Under supervised training, liver masses were
divided into five categories: hepatocellular carcinomas, other malignant
liver tumors, indeterminate or mass-like lesions, and rare benign
masses, hemangiomas, and cysts [76]. Based on 100 liver masses, a CNN
was trained and tested on differential diagnosis, with a median accuracy
of 0.84. Multiple studies have evaluated the success of AI when used in
conjunction with MRI for the diagnosis of liver and pancreatic lesions.
CNN and 3D MRI images were used to differentiate liver tissue types in
hepatocellular carcinoma patients. Following the successful testing of
their method on 20 patients, encouraging results were obtained. MRI
sequences are currently used only for T2-weighted images for grading
liver lesions automatically. In addition, an analysis of the MRI sequence
for automatic classification. Ninety-five patients were studied, with
125 benign and 88 malignant lesions. An overall accuracy of 0.77 was
achieved when analyzing DCE-MR and T2-weighted images [77].

It is crucial to identify the viral genetic markers associated with
the progression of fibrosis in patients with hepatitis who may be at
risk of developing cirrhosis. Through the use of ML, linear projection,
and Bayesian networks, several sites were identified as correlated with
fibrosis progression [78]. Among the symptoms of primary sclerosing
cholangitis are inflammation and fibrosis of the ducts within the liver.
Furthermore, the disease is premalignant, and there are no effective
medical treatments available. 509 patients with primary sclerosing
cholangitis and assessed their risks and outcomes. We considered nine
variables when estimating disease decompensation risk: patient age,
bilirubinemia, serum alkaline phosphatase, albumin, AST, platelets
count, hemoglobin, sodium, and number of years since diagnosis.
Using an ML algorithm, their tool accurately predicted hepatic
decompensation [79].

AT has recently been applied to predicting graft failure and, thus,
overcoming the problems associated with liver transplantation, such as
the high mortality rate on waiting lists, the insufficient availability of
donors, and graft failures. Additionally, AI was used to analyze factors
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associated with death after transplantation, such as diabetes [80].

Discussion

In the field of gastroenterology and hepatology, Al is a promising
tool for diagnosis, prognosis, and treatment. To date, only a few devices
have been approved for use in AI systems despite promising studies
evaluating their specificity and sensitivity. There are some of them that
are used in endoscopy for detecting colon tumors, such as EndoBRAIN-
EYE, EndoBRAIN, WISE VISION, WavSTAT4, and GI Genius. In
addition, EndoBRAIN-Plus can determine tumor depth. Endoscopists
can detect colon polyps more easily with the help of CAD EYE and
Discovery systems.

A liver lesion can be detected by Liver AI for CT scans.
Ultrasonography is performed with Poseidon and Ultrasound systems.
Endoscopy techniques can be improved with AI by gradually replacing
biopsy techniques in the future, which are currently the gold standard
for a variety of lesions. WCE is a very laborious and useful technique
for evaluating the small intestine, which is made easier with the
implementation of ML systems.

In recent years, pancreatic cancer has become one of the most
studied diseases due to its high mortality rate due to late diagnosis.
About 20% of patients benefit from surgery in these cases, but it is the
only effective treatment. At the present time, there are five diagnostic
tools available: US, EUS, CT, MRI, and positron emission tomography-
CT. In terms of sensitivity and specificity, EUS seems to be the most
effective at detecting pancreatic lesions out of these five tools. EUS
is primarily limited by the specialist’s experience when it comes to
diagnosis. Professionals in this field can detect abnormalities with
the help of AL The sensitivities and specificities of Al were analyzed
in a meta-analysis of 10 studies. When comparing their study to the
literature, which shows no significant variation in diagnostic accuracy
using AJ, they found a smaller variation in diagnostic accuracy using
Al Moreover, EUS appears to be the most sensitive at detecting lesions
of 3 c¢cm, which represents an important step in early diagnosis. A
comparison of EUS sensitivity to MRI and CT shows that it is 94.4%,
compared to 53% for MRI and 67% for CT. The Al also addresses the
issue of non-variceal upper gastrointestinal bleeding, which contributes
to a high mortality rate. An ANN has been used to predict mortality
in patients with non-variceal upper gastrointestinal bleeding. AIM65
and the Rockall-Blatchford scores were used in their analysis of 914
patients. Their ANN was more accurate than the three scores analyzed
separately, predicting mortality with >95% accuracy.

It was stated in the October 2022 position statement of the
European Society of Gastrointestinal Endoscopy (ESGE) regarding Al
particularly in relation to diagnosing and managing gastrointestinal
neoplasia, that, for AI to be implemented in a clinical setting, a
high-quality standard must be established for both diagnosis and
treatment of gastrointestinal neoplasia. In order to increase the rate of
detection, Al should provide aid to less experienced endoscopists when
diagnosing potential lesions, not to more experienced ones. Future
histopathology examinations of polyps may not be replaced by AI in
the foreseeable future, according to the ESGE. The use of AI should
not replace histopathologic examination, but rather help endoscopists
make the right decisions regarding colorectal polyps. Additionally,
they recommend comparing the performance of less experienced
endoscopists assisted by AI with that of experienced endoscopists in
future research. Among the limitations of Al, the most important are
that further studies must be done to determine its effectiveness on a
larger number of patients, and that CADe systems are expensive, so trial
programs must be conducted before purchasing.
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Several researchers like Dr. Ahmad [66] concluded in 2022
that CADe significantly improved the rate of polyp detection on
colonoscopy. Eight experienced endoscopists performed the study in a
cancer screening program that included 614 patients randomized into
a CADe or control group. Although polyp detection rates were higher
in the CADe group (85.7% vs 79.7%) despite no significant difference
in ADR between the two groups (2.4 vs 2.1). Another study published
in 2022, evaluated a CADe program which was used for 3 months in
one facility, the largest from the study, compared to another 5 units
that served as controls. The center using CADe had an ADR of 40.1%,
which was lower than that of the control sites, which had an ADR of
41.8%. It may be suggested that other factors, such as motivation and
training, are also important in this process based on the fact that this
result differed from multiple randomized controlled trials.

In conclusion, Al offers physicians and patients future perspectives
regarding diagnosis, prognosis, and treatment decisions, but further
research is necessary.
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