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Introduction
Recent advances in diagnosis and treatment within internal 

medicine have been marked by significant developments across various 
disease areas, as reflected in recent literature [1-5]. One notable area 
of progress is the management of acute heart failure, where updated 
consensus guidelines emphasize comprehensive approaches to diagnosis 
and treatment [6-10]. Delgado et al. [11] highlights the necessity 
of integrating recent clinical insights to improve patient outcomes, 
updating previous guidelines to incorporate novel diagnostic and 
therapeutic strategies. In the realm of diagnostic innovations, nuclear 
medicine has emerged as a pivotal field influencing disease detection 
and personalized treatment planning [12-15]. Yoo et al. [16] discussed 
how advancements in molecular imaging and the integration of AI are 
transforming nuclear medicine, enabling more precise diagnosis and 
tailored interventions across multiple medical disciplines.

Biomolecular diagnostic tools have also seen breakthroughs, 

particularly with the development of antibody nanoconjugates [17-20]. 
Kadkhoda et al. [21] review recent trends in antibody nanoconjugates, 
emphasizing their potential in enhancing diagnostic accuracy 
and therapeutic efficacy, which could be particularly impactful in 
internal medicine applications. Furthermore, the understanding and 
management of sarcopenia, especially in patients with hip fractures, have 
benefited from recent consensus on diagnostic criteria and treatment 
approaches [22-24]. Yoo et al. [16] underscore the importance of early 
diagnosis and targeted management strategies, which are crucial for 
improving functional recovery in affected patients.

Advances in biomedical materials, such as polymers, are also 
contributing to internal medicine by enabling the development of 
innovative therapeutic devices and drug delivery systems [25-28]. Chen 
et al. [29] summarize progress in biomedical polymers, highlighting 
their role in creating more effective and biocompatible treatment 
modalities. Cancer treatment has seen notable breakthroughs, 
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particularly in overcoming chemotherapy resistance. Davodabadi et 
al. [30] discussed recent targeted drug delivery systems that address 
resistance mechanisms, offering hope for more effective therapies 
in oncology, which are increasingly relevant to internal medicine 
practitioners managing complex cases. Additionally, Ganeson et al. 
[31] explore microneedle technology, which facilitates minimally 
invasive and self-administered drug delivery, representing a significant 
step forward in patient-centered cancer therapy.

In hematology, the prognosis of multiple myeloma has improved 
markedly with the introduction of new pharmacological agents [32-
35]. Ruff et al. [36] reports that recent drug developments have nearly 
doubled median survival times, underscoring the rapid progress in 
therapeutic options for hematologic malignancies within internal 
medicine. Finally, the diagnosis and management of vasculitis, such as 
anti-neutrophil cytoplasmic antibodies-associated vasculitis, have been 
refined through the development of comprehensive guidelines. Holle 
et al. [37] emphasizes the importance of prompt diagnosis and tailored 
treatment strategies, which are critical for improving patient outcomes 
in complex autoimmune conditions. Overall, these recent studies 
collectively demonstrate a trend toward more precise, personalized, 
and effective diagnostic and therapeutic approaches in internal 
medicine, driven by technological innovations, molecular insights, and 
updated clinical guidelines.

The field of internal medicine has witnessed remarkable advances 
in recent years, particularly in the areas of diagnosis and treatment. 
These breakthroughs are largely driven by technological innovations, 
improved understanding of disease mechanisms, and the integration 
of personalized medicine approaches [38-40]. This review explores 
some of the most significant recent developments in internal medicine, 
highlighting their implications for patient care.

NGS in Lymphomas
NGS has revolutionized the diagnosis and treatment of 

lymphomas, particularly non-Hodgkin’s lymphoma [41]. Recent 
studies have demonstrated that NGS can identify genomic biomarkers 
that facilitate better subclassification and more accurate diagnoses of B-cell 
and T-cell lymphomas [42-45]. This technology not only aids in prognostic 
assessment but also uncovers recurrent somatic mutations that may serve 
as novel therapeutic targets or indicate drug resistance. The application 
of NGS in liquid biopsies allows for minimally invasive diagnosis and 
real-time monitoring of patients, enabling early detection of relapses and 
the possibility of response-adapted therapies. As such, NGS is poised to 
become a standard component of the diagnostic workup for lymphoma 
patients, paving the way for precision medicine in oncology [46].

A study by Breinholt et al. [47] on NGS in B-cell non-Hodgkin’s 
lymphoma diagnostics reported mutations in a high percentage of the 
samples analyzed. Specifically, mutations were detected in 94% of the 
298 samples included in the study. Most of the lymphomas could be 
definitively classified using the implemented NGS analysis. However, 
a subset of 24 cases was initially classified as small B-cell lymphomas 
without clear defining characteristics. For the 24 cases that lacked 
defining characteristics, the mutational findings provided significant 
retrospective diagnostic value. 50% of these cases (12 out of 24) could 
subsequently be assigned a likely diagnostic subtype based on their 
mutational profiles.  The study demonstrated that integrating a 59-
gene exome sequencing panel into routine diagnostics led to a high 
rate of mutation detection, aided in the definitive classification of most 
lymphomas, and notably helped in retrospectively subtyping half of the 
initially unclassified cases.

A study by Albitar et al. [48] demonstrated the effectiveness of 
combining NGS quantification of RNA from 30 CD markers with 
machine learning for the diagnosis and classification of various 
lymphoma types. Machine learning algorithms, specifically Random 
Forest, showed remarkable sensitivity and specificity in diagnosing 
most lymphoma subclasses. An area under the curve (AUC) of 1.00 
was achieved for several diagnostic distinctions, indicating perfect 
classification. These included: DLBCL vs T-cell lymphoma, Hodgkin vs 
T-cell lymphoma, Hodgkin vs diffuses large B-cell lymphoma, Mantle 
cell lymphoma vs diffuses large B-cell lymphoma, and Follicular 
lymphoma vs marginal zone lymphoma. For these pairings, the 
sensitivity and specificity in the testing set were both 100%. Marginal 
lymphoma vs mantle cell lymphoma: AUC of 0.974 (95% confidence 
interval (CI): 0.920 to 1.000) with 88% sensitivity and 100% specificity. 
Follicular lymphoma vs diffuses large B-cell lymphoma: AUC of 0.887 
(95% CI: 0.776-0.999) with 81.3% sensitivity and 83.7% specificity. 
The data confirms that NGS quantification of RNA from 30 CD 
markers, when combined with machine learning, is sufficient for 
reliable classification of various lymphoma types. This approach can 
provide valuable information for distinguishing between challenging 
diagnoses. Technology has the potential to be automated, making it 
less susceptible to human errors. RNA quantification using NGS could 
potentially replace immunohistochemistry and be applied when sample 
amounts are limited, such as in needle aspiration or core biopsies. In 
summary, the study successfully demonstrated that a machine learning 
approach using RNA quantification of CD markers via NGS offers a 
highly accurate and potentially more efficient alternative to traditional 
immunohistochemistry for lymphoma diagnosis and classification, 
especially in cases with limited tissue samples.

A study by Wu et al. [49] found a significant correlation between 
the genetic variation of ctDNA in the plasma and clinical indices in 
lymphoma. Clear genetic heterogeneity was observed in the ctDNAs 
from different lymphoma subtypes, including Hodgkin’s lymphoma, 
germinal center B-cell–like lymphoma, non-germinal center B-cell–
like lymphoma, and marginal zone lymphoma. This finding confirms 
that distinct molecular mechanisms are involved in the pathogenesis of 
different lymphomas. These findings suggest that NGS-based ctDNA 
mutation analysis can reveal genetic heterogeneity across lymphoma 
subtypes. This has potential implications for discovering therapeutic 
targets, exploring genomic evolution, and developing risk-adaptive 
therapies. In summary, the research highlights the utility of ctDNA 
analysis via NGS in understanding the genetic landscape of lymphoma, 
its correlation with clinical parameters, and its potential to guide future 
therapeutic strategies.

In conclusion, NGS is a transformative tool in the field of lymphoma 
diagnostics and treatment. By providing comprehensive genetic 
insights, NGS facilitates precise diagnosis, prognostication, and the 
development of personalized therapies. However, the full potential of 
this technology can only be realized by overcoming existing challenges 
related to its implementation and accessibility.

Advancements in Acute Heart Failure Management
The management of acute heart failure has also seen significant 

advancements, as highlighted by a recent consensus document from 
leading Spanish and European medical societies [50-52]. This document 
updates the previous guidelines and incorporates new pharmacological 
treatments, emphasizing early and intermittent treatment strategies. 
The comprehensive approach outlined in the consensus aims to 
improve the diagnosis, treatment, and overall management of acute 
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heart failure, reflecting the evolving understanding of this complex 
condition [11].

The primary focus [53] of current therapies for acute decompensated 
heart failure is to rapidly alleviate symptoms such as dyspnea and 
peripheral edema, and to achieve patient decongestion. Intravenous 
diuretics are recommended for volume removal and decongestion 
in patients with significant volume overload. Concomitant use 
of intravenous vasodilators (e.g., nitroprusside, nitroglycerin, 
and nesiritide) can aid decongestion and improve symptoms in 
patients who do not exhibit hypotension. For patients with reduced 
ejection fraction and signs of decreased perfusion or hemodynamic 
compromise, intravenous inotropes may be used to enhance and 
sustain cardiac output and end-organ perfusion. Despite significant 
advancements in understanding the complex pathophysiology of heart 
failure and the development of medical therapies that have improved 
outcomes for chronic stable heart failure, the management strategies 
and therapies for acute decompensated heart failure have shown 
little change over time. A critical finding is that none of the current 
mainstay therapies for acute decompensated heart failure have been 
demonstrated to improve morbidity and mortality; in fact, they may 
potentially increase them. The overall mortality rate for heart failure 
remains high, with 50% mortality at 5 years. Hospitalizations for acute 
decompensated heart failure are a substantial burden on the healthcare 
system, and even with medical therapy advancements, the 30-day 
readmission rate for acute decompensated heart failure is 25%. In 
summary, while current acute decompensated heart failure therapies 
effectively manage acute symptoms like dyspnea and edema, they have 
not been shown to improve long-term morbidity or mortality, and 
readmission rates remain high, highlighting a significant unmet need 
for novel therapeutic approaches.

Review by Gouda and Ezekowitz [54] highlights advances in the 
diagnosis and management of acute heart failure based on recent clinical 
trials and observational studies. Despite these advancements, the paper 
concludes that there is currently insufficient evidence to recommend 
changes to the existing standards of care. The paper examines the use 
of novel biomarkers for acute heart failure diagnosis. These biomarkers 
include micro RNAs, osteopontin, and insulin-like growth-factor 
binding protein-7. Evidence for several novel pharmacological 
therapies is summarized. These therapies include: serelaxin, ularitide, 
clevidipine, urocortins, BMS-986231, TRB027, vericiguat, omecamtiv, 
and torsemide. The review also explores evidence supporting the 
use of novel management algorithms. In summary, while there have 
been advances in understanding the pathophysiology of acute heart 
failure and new diagnostic tools and therapies have been investigated, 
the current evidence does not yet support a shift from established 
standards of care.

A study by Velez [55] reported dapagliflozin and empagliflozin 
have been shown to reduce the risk of heart failure hospitalization 
and cardiovascular death. This benefit applies to heart failure patients 
regardless of their left ventricular ejection fraction or diabetes status. 
SGLT2i are now considered the fourth pillar of heart failure medical 
therapy, alongside sacubitril-valsartan, evidence-based beta-blockers, 
and mineralocorticoid receptor antagonists. They are recommended 
for all symptomatic patients across the full spectrum of heart failure 
phenotypes, including those hospitalized with heart failure. The 
precise mechanism of action for SGLT2i in heart failure is not yet 
fully defined. Vericiguat, which stimulates guanylate cyclase, and 
omecamtiv mecarbil, a cardiac myotrope, have demonstrated benefits 
in patients with heart failure with reduced ejection fraction. Vericiguat 

is particularly beneficial for high-risk patients who have a worsening 
heart failure clinical profile. Rapid up-titration of guideline-directed 
medical therapy in patients hospitalized with heart failure has been 
found to be safe and leads to improved clinical outcomes. Most patients 
hospitalized with heart failure can achieve high doses of guideline-
directed medical therapy within weeks, and this approach reduces 
the likelihood of adverse heart failure outcomes. In summary, recent 
advances in heart failure management highlight the significant role of 
SGLT2i as a foundational therapy, the specific benefits of vericiguat and 
omecamtiv mecarbil for heart failure with reduced ejection fraction, 
and the positive impact of rapidly escalating guideline-directed medical 
therapy in hospitalized patients.

Despite these advancements, several challenges remain in the 
management of acute heart failure. The high in-hospital mortality and 
post-discharge readmission rates underscore the need for continued 
research and innovation. The lack of adequately conducted trials 
to establish evidence-based strategies for targeted decongestive 
therapy and the optimal timing for guideline-directed medical 
therapy initiation are areas requiring further investigation [53, 56]. 
Additionally, the integration of novel therapies into clinical practice 
and the development of personalized treatment plans based on patient-
specific characteristics are critical for improving acute heart failure 
outcomes [57, 58].

Nuclear Medicine and Molecular Imaging
Nuclear medicine has emerged as a pivotal field in the diagnosis and 

treatment of various diseases, including malignancies and neurological 
disorders [59-61]. The development of hybrid imaging technologies, 
such as positron emission tomography–computed tomography (PET-
CT) and single photon emission computed tomography–computed 
tomography (SPECT-CT), has significantly enhanced diagnostic accuracy 
[62-64]. Furthermore, the advent of theranostics-a treatment approach 
that combines therapy and diagnostics-marks a significant breakthrough 
in personalized medicine. These innovations not only improve patient 
outcomes but also reduce radiation exposure, making nuclear medicine a 
cornerstone of modern diagnostic and therapeutic strategies [65].

A case report by Stephens et al. [66] details the successful treatment 
of a 57-year-old African American man diagnosed with pancreatic 
neuroendocrine tumors. The patient’s condition significantly improved 
following a specific treatment regimen. PET imaging, utilizing gallium 
Ga 68 dotatate, was employed to precisely locate the tumors. Selected 
tumors were treated with lutetium Lu 177 dotatate. The patient received 
four doses, each of 200 mCi. This treatment was administered over an 
8-month period. The patient transitioned from being bedbound to 
ambulatory. His mental state improved from confusion to coherence. 
The patient reported experiencing no adverse effects from the 
treatment. The case study highlights the effectiveness of combining 
Ga 68-labeled PET imaging with lutetium Lu 177 dotatate treatment 
for pancreatic neuroendocrine tumors. While this treatment is not 
considered a cure, it has demonstrated the ability to enhance a patient’s 
quality of life. In summary, the paper presents a positive outcome 
for a patient with pancreatic neuroendocrine tumors, showcasing 
significant improvements in mobility and cognitive function with no 
reported side effects, underscoring the efficacy of the described nuclear 
medicine approach.

A study by Paquette et al. [67] reported phase II clinical trial 
(NCT04824014) investigating the novel estrogen receptor PET 
radiotracer 18F-4FMFES in estrogen receptor-positive breast cancer 
patients yielded several significant results when compared to 16α-18F-
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fluoroestradiol (18F-FES) (Figure 1). Analysis of blood metabolites 60 
min after tracer injection demonstrated that 18F-4FMFES exhibited a 
2.5-fold increase in metabolic stability compared to 18F-FES. While the 
maximum standardized uptake value for most tumor foci was similar 
between 18F-4FMFES PET and 18F-FES PET, 18F-4FMFES consistently 
showed substantially improved tumor contrast in all cases. Lower 
uptake was observed in nonspecific tissues with 18F-4FMFES, notably 
a four-fold decrease in blood-pool activity compared to 18F-FES. 
Consequently, image quality was considerably enhanced when using 
18F-4FMFES due to lower overall background activity. As a direct result 
of the improved image quality and reduced background, 18F-4FMFES 
successfully identified nine more lesions than 18F-FES. In summary, the 
study concluded that 18F-4FMFES PET offers a lower nonspecific signal 
and better tumor contrast than 18F-FES PET, leading to improved 
diagnostic confidence and a reduction in false-negative diagnoses in 
estrogen receptor-positive breast cancer patients.

A study on [18F]AlF-RESCA-MIRC213 (NCT05622240), an 
18F-labeled nanobody for imaging human epidermal growth factor 
receptor 2 (HER2)-positive cancers, yielded several significant results 
regarding its preparation, in-vitro and in-vivo characteristics, and first-
in-human evaluation. [18F]AlF-RESCA-MIRC213 was successfully 
prepared at room temperature within 20 min. The radiochemical yield 
was 50.48 ± 7.6%, and its radiochemical purity exceeded 98% (n > 
10). In NCI-N87 cells, the 2-hour cellular uptake of [18F]AlF-RESCA-
MIRC213 was measured at 11.22 ± 0.60 %IA/105 cells. The binding 
affinity (Kd value) was determined to be 1.23 ± 0.58 nM using SK-
OV-3 cells. Xenografted SK-OV-3 tumors were readily detected by [18F]
AlF-RESCA-MIRC213 PET 2 h post-injection, showing a maximum 
standardized uptake value of 4.73 ± 1.18 ID%/g. This was significantly 
higher than the blocking group’s maximum standardized uptake value of 

1.70 ± 0.13 ID%/g (p < 0.05). No significant radioactivity accumulation 
was observed in the bone of tumor-bearing animals. No adverse 
reactions were reported in any of the six breast cancer patients included 
in the study. The uptake of [18F]AlF-RESCA-MIRC213 was primarily 
observed in the lacrimal gland, parotid gland, submandibular gland, 
thyroid gland, gallbladder, kidneys, liver, and intestine. Consistent 
with preclinical findings, no significant radioactivity accumulation was 
noted in the bone of cancer patients. At 2 h post-injection, [18F]AlF-
RESCA-MIRC213 showed significantly higher tumor uptake in HER2-
positive lesions (maximum standardized uptake value of 3.62 ± 1.56) 
compared to HER2-negative lesions (maximum standardized uptake 
value of 1.41 ± 0.41), with a p-value of 0.0012. The kidneys received 
the highest radiation dose at 2.17 x 10-2 mGy/MBq, and the effective 
dose was calculated to be 1.76 x 10-2 mSv/MBq. In summary, the 
study demonstrated that [18F]AlF-RESCA-MIRC213 can be efficiently 
prepared under mild conditions and exhibits high stability both in 
vitro and in vivo. The clinical results suggest it is a safe radiotracer with 
favorable pharmacokinetics and dosimetry, showing promise for non-
invasive diagnosis of HER2-positive cancers due to its selective and 
high tumor uptake.

While the advancements in nuclear medicine and molecular 
imaging have significantly enhanced the design and execution 
of randomized controlled trials, challenges remain. The need for 
standardization across imaging techniques and trial sites is critical to 
ensure consistency and reliability of results. Additionally, the high cost 
and complexity of these advanced imaging modalities may limit their 
widespread adoption in clinical trials. Nonetheless, ongoing research 
and development efforts continue to push the boundaries of what is 
possible in nuclear medicine, promising even greater contributions to 
personalized medicine and improved patient outcomes in the future 

Figure 1: Comparative PET Imaging with 18F-FES and 18F-4FMFES. (A) Whole-body maximum-intensity-projection PET scans from a patient initially classified as T1cN2M0, where 
18F-FES PET identified previously undetected metastases in the sternum and iliac bone. (B) A representative transaxial view of the primary tumor. (C) A transaxial section highlighting 
sternal metastasis. (D) Thoracic maximum-intensity-projection images from a patient with suspected post-resection recurrence. (E) Side-by-side transaxial PET slices comparing 18F-FES 
and 18F-4FMFES in assessing pulmonary metastatic disease. Corresponding CT imaging confirmed the presence of three small tumors, measuring 5 mm (red arrow), 4 mm (blue arrow), 
and 2 mm (gray arrow) [67].

https://doi.org/10.47275/2953-4763-455


Citation: Subudhi KA, Jane S, Kama AK, Gandhi MC  (2026) Recent Breakthroughs in Diagnosis and Treatment in Internal Medicine. Prensa Med Argent, 
Volume 112:1. 455. DOI: https://doi.org/10.47275/2953-4763-455

Pages: 5-10Prensa Med Argent, Volume 112:1

[68].

MicroRNAs in Glioblastoma Treatment
In the realm of oncology, microRNAs (miRNAs) have gained 

attention for their role in glioblastoma multiforme [69-71]. Research 
indicates that miRNAs are crucial in regulating cellular processes and 
may serve as biomarkers for diagnosis and prognosis. Understanding 
the expression patterns of specific miRNAs could lead to the 
development of targeted therapies, offering new hope for patients 
with this aggressive form of brain cancer [69]. The miRNA profile in 
glioblastoma can indicate the disease stage and facilitate prognosis and 
therapy selection. Specific miRNAs with the highest prognostic value 
for glioblastoma have been identified, and their analysis in blood and 
cerebrospinal fluid can aid in diagnosis. Glioblastoma-specific miRNAs 
have diverse functions, acting as oncogenes or tumor suppressors [72-
74]. They are involved in developing resistance to chemotherapy and 
radiotherapy, stimulating neo-angiogenesis and cell proliferation, 
and regulating the cell cycle and apoptosis. Several miRNAs are 
up-regulated in glioblastoma and function as oncogenic miRNAs. 
Examples include miR-21, miR-93, miR-10b, miR-196a, miR-221/222, 
and miR-182. Overexpression of these miRNAs is often associated 
with aggressive tumor characteristics and poor patient survival. 
Conversely, other miRNAs are downregulated in glioblastoma and act 
as tumor suppressors. These include miR-7, miR-128, miR-124/137, 
miR-101, miR-181, miR-146a, and miR-34a. Reduced expression of 
these miRNAs contributes to tumor progression by failing to inhibit 
cell proliferation, promote apoptosis, or regulate other cancer-related 
pathways [72-74].

A study by McDonald et al. [75] focused on identifying effective 
microRNAs for glioblastoma treatment and developing an improved 
delivery system. A stepwise screen successfully identified miR-124-2, 
miR-135a-2, and let-7i as the most effective miRs across all glioblastoma 
subtypes. These miRs also demonstrated clinical relevance. Delivery 
of engineered exosomes containing a polycistronic plasmid (eExos + 
pPolymiR) resulted in high expression of all three identified miRs in 
glioma stem cells. In vitro, eExos + pPolymiR significantly decreased 
the proliferation of glioma stem cells. When tested in glioma stem 
cells-bearing mice, eExos + pPolymiR prolonged survival more 
effectively than eExos carrying individual miRs or a cocktail of miRs. 
In summary, the research successfully identified a potent combination 
of anti-glioblastoma miRs and developed an innovative exosome-based 
delivery platform that significantly improved therapeutic outcomes 
both in vitro and in vivo.

Another study by Grafals-Ruiz et al. [76] investigated the role of 
miR-92b in glioblastoma and identified its direct target gene, F-box 
and WD repeat domain containing 7 (FBXW7), highlighting miR-92b’s 
potential as a therapeutic target. miR-92b was found to be significantly 
upregulated in glioblastoma tumors when compared to normal brain 
tissue samples. Suppressed glioblastoma cell growth and migration, and 
induced apoptosis. This was achieved using oligonucleotide microRNA 

inhibitors. Produced effects opposite to its inhibition, suggesting its 
role in promoting glioblastoma progression. Systemic administration 
of liposomal-miR92b-OMIs in a glioblastoma xenograft mouse model 
led to reductions in tumor volume and weight. FBXW7 was identified 
as a direct target gene of miR-92b in glioblastoma cells. FBXW7 is 
recognized as a tumor suppressor gene in various cancer types. Analysis 
of patient data revealed that glioblastoma patients with higher FBXW7 
mRNA levels exhibited significantly better overall survival compared 
to those with lower levels. In summary, the dysregulated expression 
of miR-92b in glioblastoma contributes to tumor progression by 
directly targeting the tumor suppressor gene FBXW7. These findings 
underscore the potential of miR-92b as a promising therapeutic target 
for improving treatment outcomes in glioblastoma patients.

While miRNAs offer promising avenues for improving 
glioblastoma treatment, their clinical application is still in the early 
stages. The development of effective delivery systems and a deeper 
understanding of miRNA interactions are crucial for translating these 
findings into clinical practice. As research progresses, miRNAs may 
become integral components of personalized glioblastoma therapies, 
potentially improving patient outcomes and survival rates.

Microneedles for Cancer Therapy
Microneedles represent an innovative approach to drug delivery 

in cancer therapy (Table 1). These tiny, painless needles allow for 
transdermal administration of therapeutics, enhancing patient 
compliance and reducing side effects associated with conventional 
delivery methods. The potential of microneedles to improve the efficacy 
of cancer treatments while minimizing discomfort underscores their 
promise as a breakthrough technology in oncology [31].

A study by Lim et al. [80] investigated the efficacy of microneedle-
guided lymphatic delivery of SKKU-06, a natural immune modulator 
toxin, for enhanced cancer immunotherapy. The key results highlight 
their potential in modulating the tumor microenvironment and 
improving anti-tumor immunity. The dissolving microneedle guided 
delivery of SKKU-06 to skin tumors and tumor-draining lymph nodes 
effectively induced immunogenic cell death. This delivery method 
stimulated the activation and maturation of antigen-presenting cells. 
The combined effects of immunogenic cell death and antigen-presenting 
cells stimulation promoted the development of both humoral and 
cellular anti-tumor immunity. The immunomodulatory effects of 
SKKU-06@dissolving microneedles were significantly enhanced 
when combined with anti-programmed cell death protein-1 (PD-1) 
treatment. This combination therapy led to an increased infiltration of 
CD8+ T cells within the tumor. Concurrently, the treatment resulted 
in a reduction of reduced regulatory T cell populations in the tumor 
microenvironment. These changes in the tumor microenvironment 
contributed to efficient growth inhibition of established skin cancer 
and metastatic cancer. The treatment also led to prolonged survival of 
the subjects. In summary, the study demonstrates that microneedle-
guided lymphatic delivery of SKKU-06 is a promising strategy for 

NCT identifier Study title Samples studied Conditions

NCT04928222 [77] Placebo microneedles in healthy volunteers (part I) and efficacy/safety of 
doxorubicin microneedles in basal cell cancer subjects (part II)

Microneedles with placebo and 
doxorubicin loaded microneedle Basal cell carcinoma

NCT02192021 [78] Microneedles array-doxorubicin in patients with cutaneous T-cell 
lymphoma Doxorubicin loaded microneedle Cutaneous T cell 

lymphoma

NCT03646188 [79]
Open-label dose escalation trial to evaluate dose-limiting toxicity and 

maximum tolerated dose of microneedles arrays containing doxorubicin in 
basal cell carcinoma

Microneedles with placebo and 25 µg, 
50 µg, 100 µg, 200 µg of doxorubicin 

containing microneedle
Basal cell carcinoma

Table 1: Details of few clinical trials for application of microneedles in cancer therapy.
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cancer immunotherapy. It effectively induces immune responses, 
modulates the tumor microenvironment, and shows enhanced efficacy 
when combined with checkpoint blockade, leading to significant tumor 
regression and improved survival.

A study by Lan et al. [81] successfully developed a microneedle 
patch loaded with pH-responsive tumor-targeted lipid nanoparticles 
containing anti-PD-1 and cisplatin (CDDP) for synergistic cancer 
immuno-chemotherapy. The results demonstrate the efficacy and 
safety of this novel transdermal delivery approach for cancer treatment, 
particularly for immunotherapy-unresponsive cancers. The anti-
PD-1/CDDP@nanoparticles were synthesized using a reverse-phase 
microemulsion method, exhibiting a spherical morphology with an 
average diameter of approximately 57.6 nm. The encapsulation efficiency 
of anti-PD-1 was 50%, and the nanoparticles showed sustained release 
of platinum (from CDDP) for 72 h, with higher anti-PD-1dissociation 
in acidic environment. These nanoparticles facilitated the synergistic 
delivery of both chemotherapeutic and immunotherapeutic agents. 
The anti-PD-1/CDDP@nanoparticles demonstrated significantly 
lower half-maximal inhibitory concentration values and higher cellular 
uptake in cancer cell lines (FaDu, CAL 27, and SCC VII) compared to 
free CDDP. This indicates that lipid coating and nano-encapsulation 
improved drug efficiency. The nanoparticles significantly triggered 
apoptosis in cancer cell lines, with anti-PD-1/CDDP@nanoparticles 
inducing 24.5% cell apoptosis compared to only 2.79% by free CDDP. 
Cell cycle analysis also showed a remarkable decrease in the G2 phase, 
indicating lower cell growth. In an immunocompetent murine tumor 
homograft model, the anti-PD-1/CDDP@nanoparticles microneedle 
group showed the most notable tumor regression effect compared 
to all other groups, including systemic anti-PD-1 and anti-PD-1 + 
CDDP combinations. The tumor volume and weight were significantly 
decreased in the microneedle treated groups. Microneedle mediated 
delivery of anti-PD-1 significantly reduced tumor volume compared 
to systemic anti-PD-1 injection, even in animal models unresponsive 
to systemic anti-PD-1 therapy. This was attributed to the microneedles’ 
ability to induce immune responses by activating T-cells. CDDP 
inhibited cell proliferation, and anti-PD-1 enhanced T-cell infiltration. 
The anti-PD-1 microneedle and anti-PD-1/CDDP@nanoparticles 
microneedle groups showed significantly higher cell apoptotic indexes 
(61.4% and 73.2%, respectively) compared to the anti-PD-1 group 
(5.4%).  Microneedle mediated anti-PD-1/CDDP@nanoparticles led 
to the highest T-cell infiltration (75.95% of CD8+ T-cells) among all 
groups. The anti-PD-1/CDDP@nanoparticles microneedle group also 
showed the highest IFN-γ expression, and a remarkable decrease in 
regulatory T-cells was observed in microneedle treated groups. Unlike 
CDDP, which caused severe body weight loss and elevated blood 
urea nitrogen levels, mice treated with microneedles showed no body 
weight loss, and their blood urea nitrogen values remained within the 
normal range, indicating a safe delivery system without nephrotoxicity. 
Histological analysis showed that CDDP caused liver and kidney 
damage, but nano-encapsulation and microneedle mediated delivery 
significantly reduced this toxicity. The anti-PD-1/CDDP@nanoparticles 
microneedle groups exhibited generally normal organ structures, 
comparable to the control group, demonstrating that transdermal 
delivery via microneedles is a safe solution for cancer therapy. In 
summary, the study successfully demonstrated that microneedle-
mediated local delivery of nano-encapsulated chemotherapeutic and 
immunotherapeutic agents at tumor skin sites is a promising novel 
treatment strategy. This approach effectively boosts immune responses, 
enhances tumor regression, and significantly reduces systemic toxicity 

compared to conventional methods, offering a potential solution for 
immunotherapy-unresponsive cancers.

While microneedles present a promising advancement in cancer 
therapy, it is important to consider the broader context of cancer 
treatment. Traditional methods, despite their limitations, have been 
the cornerstone of cancer management for decades. The integration 
of microneedles into existing treatment protocols requires careful 
consideration of their compatibility and potential interactions with 
other therapies [82-84]. Additionally, the regulatory landscape for new 
medical technologies can pose challenges for the widespread adoption 
of microneedles. Nonetheless, the ongoing research and development 
in this field hold the potential to significantly enhance the effectiveness 
and accessibility of cancer treatments.

Targeted Drug Delivery in Cancer Treatment
Targeted drug delivery systems, particularly those utilizing 

nanoparticles, have emerged as a critical advancement in overcoming 
chemotherapy resistance [85, 86]. These systems enhance the 
concentration of therapeutic agents at tumor sites while minimizing 
systemic exposure and side effects. The ongoing research in this area 
aims to refine these technologies, making them more effective and safer 
for patients undergoing cancer treatment [8]. A study by Rittberg et 
al. [87] analyzed the feasibility of conducting randomized controlled 
trials for cancer drugs approved by the Food and Drug Administration 
(FDA) based on single-arm studies between 2010 and 2019 (Table 2). 
Out of 172 approvals during the study period, 31 (18.0%) were based 
on single-arm studies. The majority of these single-arm studies-based 
approvals, 77.4%, were granted through the accelerated approval 
pathway. The median sample size for these single-arm studies was 
104, with a range from 23 to 411. All studies (100%) reported overall 
response rate. 55% reported duration of response. 19.4% reported 
progression-free survival. 22.5% reported overall survival. It was 
theoretically possible to conduct randomized controlled trials within 
a duration comparable to that required by single-arm studies for a 
significant proportion of approvals: (i) 84.6% for overall response 
rate endpoints, (ii) 94.1% for progression-free survival endpoints, and 
80.0% for overall survival endpoints. In conclusion, the study found 
that an overwhelming majority of FDA approvals based on single-arm 
studies could have been feasible as randomized controlled trials within 
a reasonable timeframe, suggesting that drug approval based on single-
arm studies should be reserved for exceptional circumstances due to 
potential harms to patients and scientific rigor.

While targeted drug delivery systems offer significant advantages 
over traditional chemotherapy, they are not without challenges. The 
complexity of cancer biology, including tumor heterogeneity and 
the tumor microenvironment, poses significant hurdles to the effective 
implementation of these therapies [88, 89]. Moreover, the transition 
from laboratory research to clinical application is fraught with difficulties, 
including regulatory hurdles and the need for extensive clinical testing. 
Despite these challenges, the potential of targeted drug delivery to 
revolutionize cancer treatment remains substantial, warranting continued 
research and development in this promising field.

AI in Emergency Medicine
The integration of AI into emergency medicine has shown 

promising results, particularly in diagnostic accuracy. Recent studies 
demonstrated that AI models, such as ChatGPT, outperformed 
resident physicians in diagnosing internal medicine emergencies [90, 
91]. This highlights the potential of AI as a supportive tool in clinical 
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decision-making, potentially transforming the landscape of emergency 
care [90]. 

A study by Lin et al. [92] evaluated the effectiveness of an AI-
enabled electrocardiogram system in identifying high-risk patients 
and reducing mortality. Data from 15,965 patients were included in 
the analysis, with 8,001 patients in the intervention group and 7,964 in 
the control group. The mean age of the patients was 61 ± 18 years. The 
intervention group demonstrated a significantly reduced cumulative 
proportion of death compared to the control group. The mortality rate 
was 3.6% in the intervention group versus 4.3% in the control group, 
corresponding to a hazard ratio (HR) of 0.83 (95% CI: 0.70 to 0.99). 
The AI-electrocardiogram system identified 709 high-risk cases in the 
intervention group and 688 in the control group. For these high-risk 
patients, the intervention led to a 31% reduction in mortality. The 
mortality rate was 16.0% in the intervention arm compared to 23.0% 
in the control arm (HR: 0.69, 95% CI: 0.53 to 0.90; p for interaction 
= 0.026). The intervention group with high-risk electrocardiograms 
received more intensive care. These patients also received more 
arrhythmia interventions, echocardiographic examinations, and 
electrolyte examinations. These changes contributed to a significant 
reduction in cardiac death, with a rate of 0.2% in the intervention 
arm versus 2.4% in the control arm (HR: 0.07, 95% CI: 0.01 to 0.56). 
In summary, the AI-electrocardiogram system proved effective in 
identifying high-risk patients, leading to targeted intensive care and 
interventions, which ultimately resulted in a significant reduction in 
both all-cause mortality and cardiac-specific mortality.

Another study by Hwang et al. [93] aimed to compare the accuracy 
of chest radiograph interpretation assisted by AI-based computer-
aided detection against conventional interpretation in emergency 
department patients presenting with acute respiratory symptoms 
(Figure 2). The primary and secondary outcomes were sensitivity 

and false-positive rates of chest radiograph interpretation by trainee 
radiologists for identifying acute thoracic diseases. The sensitivity of 
chest radiograph interpretation was not significantly associated with 

Drug Indication Line of therapy Single arm study 
sample size

Overall response 
rate (%)

Accelerated 
approval

Trastuzumab deruxtecan Metastatic breast cancer, HER2 positive 3rd or later 184 60.3 Yes
Enfortumab vedotin-ejfv Metastatic urothelial cancer 2nd or later 125 44 Yes

Niraparib Ovarian, fallopian tube or primary peritoneal cancer, with 
homologous recombination deficiency 3rd or later 98 24 No

Pembrolizumab plus lenvatinib Advanced endometrial cancer, not microsatellite instability-high or 
deficient mismatch repair 2nd or later 108 38.3 Yes

Entrectinib Metastatic neutropenic tyrosine receptor kinase solid tumors 2nd or later 54 57 Yes

Entrectinib Metastatic non-small cell lung cancer, ROS proto-oncogene 1 
positive 2nd or later 51 78 Yes

Pembrolizumab Metastatic small cell lung cancer 3rd or later 83 19 Yes

Erdafitinib Metastatic urothelial cancer, susceptible fibroblast growth factor 
receptor 3 or fibroblast growth factor receptor 2 genetic alterations 2nd or later 87 32.2 Yes

Pembrolizumab Advanced Merkel cell carcinoma 1st 50 56 Yes
Larotrectinib Metastatic neutropenic tyrosine receptor kinase solid tumors 2nd or later 55 75 Yes

Pembrolizumab Hepatocellular carcinoma 2nd or later 104 17 Yes
Iobenguane I 131 Advanced pheochromocytoma or paraganglioma 1st or later 68 22 No
Pembrolizumab Advanced cervical cancer, high PD-L1 2nd or later 98 14.3 No

Dabrafenib plus trametinib Metastatic anaplastic thyroid cancer with BRAF V600E mutation 1st or later 23 61 No

Nivolumab Metastatic colorectal cancer with microsatellite instability-high or 
deficient mismatch repair 2nd or later 74 32 Yes

Pembrolizumab Metastatic colorectal cancer with microsatellite instability-high or 
deficient mismatch repair 2nd or later 149 39.6 Yes

Avelumab Metastatic urothelial carcinoma 2nd or later 242 13.3 Yes
Durvalumab Metastatic urothelial carcinoma 2nd or later 191 17 Yes
Avelumab Metastatic Merkel cell carcinoma 2nd or later 88 32 Yes
Nivolumab Metastatic urothelial carcinoma 2nd or later 270 19.6 Yes

Table 2: Single-arm studies approved by FDA.

Figure 2: Case presentation: A 62-year-old woman presented to the emergency department 
with fever. (A) Initial chest radiograph demonstrated subtle, ill-defined opacities in both 
lower lung zones. (B) AI-based computer-aided detection flagged these findings with a 52% 
probability score, though the interpreting radiologist dismissed the AI results and reported 
no acute thoracic pathology. (C-D) Same-day emergency department computer tomography 
revealed patchy ground-glass opacities in the right middle lobe and left lower lobe (arrows, 
C), and minimal left pleural effusion (asterisk, D) [90].
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the use of AI-computer-aided detection. In the intervention group 
(with AI assistance), sensitivity was 67.2% (317/472). In the control 
group (without AI assistance), sensitivity was 66.0% (324/491). The 
odds ratio was 1.02 (95% CI: 0.70 to 1.49), with a p-value of 0.917, 
indicating no statistically significant difference. The false-positive rate 
of chest radiograph interpretation also showed no association with the 
use of AI-computer-aided detection. The false-positive rate was 19.3% 
(249/1289) in the intervention group. It was 18.5% (245/1324) in the 
control group. The odds ratio was 1.00 (95% CI: 0.79 to 1.26), with a 
p-value of 0.985, again indicating no statistically significant difference. 
Based on these results, the study concluded that AI-computer-aided 
detection did not improve either the sensitivity or the false-positive 
rate of chest radiograph interpretation for diagnosing acute thoracic 
disease in patients with acute respiratory symptoms in the emergency 
department.

While AI holds revolutionary potential for emergency medicine, its 
successful integration requires a careful balance between technological 
innovation and ethical practice. The future of emergency medicine 
likely lies in a synergistic relationship between AI and human expertise, 
where AI augments rather than replaces human decision-making. 
Ongoing research and the development of appropriate regulatory 
frameworks are essential to navigate the challenges and fully realize the 
benefits of AI in emergency medicine [94, 95].

Conclusion
The recent advancements in internal medicine underscore a 

transformative shift toward precision and personalized healthcare. 
Innovations such as NGS for lymphoma subtyping, targeted drug 
delivery systems for cancer therapy, and the integration of AI in 
emergency medicine exemplify how technology is revolutionizing 
diagnosis and treatment. These breakthroughs not only enhance 
diagnostic accuracy and therapeutic efficacy but also pave the way 
for minimally invasive and patient-centered approaches. However, 
challenges such as standardization, accessibility, and the need for 
robust clinical validation remain critical hurdles that must be addressed 
to fully realize the potential of these technologies in routine clinical 
practice.

The field has also seen remarkable progress in managing complex 
conditions like acute heart failure and glioblastoma, where novel 
biomarkers, microneedle-based drug delivery, and miRNA therapies 
offer new hope for improved patient outcomes. The development of 
hybrid imaging technologies in nuclear medicine and the advent of 
theragnostic further highlight the convergence of diagnostics and 
therapy, enabling tailored interventions. Despite these advancements, 
the high costs, regulatory complexities, and ethical considerations 
associated with emerging technologies necessitate ongoing 
collaboration among researchers, clinicians, and policymakers to 
ensure equitable adoption and sustainable integration into healthcare 
systems.

Looking ahead, the future of internal medicine lies in the seamless 
integration of cutting-edge science with compassionate patient care. 
The collective insights from recent studies emphasize the importance 
of multidisciplinary approaches, continuous innovation, and evidence-
based practice. As the field evolves, fostering global partnerships, 
investing in education, and addressing disparities in healthcare 
access will be paramount. By harnessing the power of technological 
advancements while maintaining a patient-centric focus, internal 
medicine can continue to drive meaningful improvements in health 
outcomes and quality of life for patients worldwide.
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